欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2013104335847
申请人: 杭州电子科技大学
专利类型:发明专利
专利状态:已下证
专利领域: 控制;调节
更新日期:2024-11-06
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.批次过程的线性二次型容错控制方法,其特征在于该方法的具体步骤是:步骤(1).建立被控对象基于线性二次控制的状态空间模型,具体方法是:a.利用实时数据驱动的方法建立过程输入输出模型,具体方法是:建立批次过程的实时运行数据库,通过数据采集装置采集实时过程运行数据,将采集的实时过程运行数据作为样本集合 其中, 表示第i组工艺参数的输入数据,y(i)表示第i组工艺参数的输出值,N表示采样总数;以该对象的实时过程运行数据集合为基础建立基于最小二乘法的离散差分方程形式的过程模型:其中,yL(k)表示k时刻过程模型的工艺参数的输出值,θ表示通过辨识得到的模型参数的集合,表示过程模型工艺参数的过去时刻的输入和输出数据的集合,u(k)表示k时刻工艺参数对应的控制变量,n,m,d+1分别为对应实际过程的输出变量阶次、输入变量阶次、时滞,T为矩阵的转置符号;

采用的辨识手段为:

其中, 和P为辨识中的两个矩阵, γ为遗忘因子,为单位矩阵;

b.将a步骤中得到的过程模型转换为差分方程的形式:Δy(k)+M1Δy(k-1)+M2Δy(k-2)+…+Mn-1Δy(k-n-1)+MnΔy(k-n)=N1Δu(k-1)+N2Δu(k-2)+…+Nn-1Δu(k-n-1)+NnΔu(k-n)其中,Δ为差分算子,M1,M2…Mn,N1,N2…Nn为通过模型转换得到的相关系数;

引入中间变量Δm(k),Δm(k)满足将上面的差分方程改写成

Δm(k)+M1Δm(k-1)+…+MnΔm(k-n)=Δu(k)Δy(k)=N1Δm(k-1)+N2Δm(k-2)+…+NnΔm(k-n)c.选取Δm(k),Δm(k-1),Δm(k-2)…Δm(k-n+1)为相变量形式,即其中,Δx1(k),Δx2(k),…,Δxn(k)为系统k时刻的各个状态变量;

d.进一步将b步骤的差分方程模型转化为状态空间模型:其中

C=[Nn,Nn-1,…,N1]

e.将d步骤中得到的差分状态空间模型转换为包含状态变量和输出跟踪误差的新状态空间模型,形式如下:p(k+1)=Amp(k)+BmΔu(k)=Amp(k)+Bmu(k)-Bmu(k-1)式中,

e(k)为k时刻理想输出与实际输出之间的差值;

步骤(2).设计被控对象的线性二次型容错控制器,具体方法是:f.选取被控对象过程的目标函数,形式如下:其中,pr(k),Q>0,R>0,Qf>0分别为设定状态、输出加权矩阵、输入加权矩阵和终端加权矩阵,[k0,kf]为优化时域,这里的pr(k)设置为0状态;

g.通过求解f步骤中的目标函数得到控制量,形式如下:-1

其中,R 表示输入加权矩阵的逆矩阵,I表示合适维数的单位阵;

h.将g步骤中得到的控制量u(k)作用于被控对象;

i.在下一时刻,依照f到h的步骤继续求解新的控制量u(k+1),依次循环。