1.动态矩阵控制优化的废塑料裂解炉炉膛压力控制方法,其特征在于该方法的具体步骤是:步骤(1).通过过程对象的实时阶跃响应数据建立被控对象的模型,具体方法是:
1-a.给被控对象一个阶跃输入信号,记录被控对象的阶跃响应曲线;
1-b.将步骤1-a得到的阶跃响应曲线进行滤波处理,然后拟合成一条光滑曲线,记录光滑曲线上每个采样时刻对应的阶跃响应数据,第一个采样时刻为Ts,相邻两个采样时刻间隔的时间为Ts,采样时刻顺序为Ts、2Ts、3Ts……;被控对象的阶跃响应将在某一个时刻tN=NTs后趋于平稳,当ai,i>N,与aN的误差和测量误差有相同的数量级时,即可认为aN近似等于阶跃响应的稳态值;建立对象的模型向量a:a=[a1,a2,…aN]T
其中T为矩阵的转置符号,N为建模时域;
步骤(2).设计被控对象的PI控制器,具体方法是:
2-a.利用上面获得的模型向量a建立被控对象的动态矩阵,其形式如下:其中,A是被控对象的P×M阶动态矩阵,ai是阶跃响应的数据,P为动态矩阵控制算法的优化时域,M为动态矩阵控制算法的控制时域,M<P<N;
2-b.建立被控对象当前k时刻的模型预测初始响应值yM(k)先得到k-1时刻加入控制增量Δu(k-1)后的模型预测值yp(k-1):yP(k-1)=yM(k-1)+A0Δu(k-1)其中,
y1(k|k-1),y1(k+1|k-1),…,y1(k+N-1|k-1)分别表示被控对象在k-1时刻对k,k+1,…,k+N-1时刻加入控制增量Δu(k-1)后的模型预测值,y0(k|k-1),y0(k|k-1),…y0(k+N-1|k-
1)表示k-1时刻对k,k+1,…,k+N-1时刻的初始预测值,A0为阶跃响应数据建立的矩阵,Δu(k-1)为k-1时刻的输入控制增量;
接着得到k时刻被控对象的模型预测误差值e(k):e(k)=y(k)-y1(k|k-1)
其中,y(k)表示k时刻测得的被控对象的实际输出值;
进一步得到k时刻模型输出的修正值ycor(k)∶ycor(k)=yM(k-1)+h*e(k)其中,
ycor(k|k),ycor(k+1|k),…ycor(k+N-1|k)分别表示被控对象在k时刻模型的修正值,h为误差补偿的权矩阵,α为误差校正系数;
最后的得到k时刻的模型预测的初始响应值yM(k):yM(k)=Sycor(k)
其中,S为N×N阶的状态转移矩阵,
2-c.计算被控对象在M个连续的控制增量Δu(k),…,Δu(k+M-1)下的预测输出值yPM,具体方法是:yPM(k)=yp0(k)+AΔuM(k)其中,yP0(k)是yM(k)的前P项,yM(k+1|k),yM(k+2|k),…,yM(k+P|k)为k时刻对k+1,k+
2,…,k+P时刻的模型预测输出值;
2-d.令被控对象的控制时域M=1,选取被控对象的目标函数J(k),形式如下:min J(k)=Q(ref(k)-yPM(k))2+rΔu2(k)=Q(ref(k)-yP0(k)-AΔu(k))2+rΔu2(k)ref(k)=[ref1(k),ref2(k),…,refP(k)]Trefi(k)=βiy(k)+(1-βi)c(k),Q=diag(q1,q2,…,qP)其中,Q为误差加权矩阵,q1,q2,…,qP为加权矩阵的参数值;β为柔化系数,c(k)为设定值;r=diag(r1,r2,…rM)为控制加权矩阵,r1,r2,…rM为控制加权矩阵的参数,ref(k)为系统的参考轨迹,refi(k)为参考轨迹中第i个参考点的值;
2-e.将控制量u(k)进行变换:
u(k)=u(k-1)+Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k)e(k)=c(k)-y(k)
将u(k)代入到步骤2-d中的目标函数求解PI控制器中的参数得:T
u(k)=u(k-1)+w(k)E(k)w(k)=[w1(k),w2(k)]T
w1(k)=Kp(k)+Ki(k),w2(k)=-Kp(k)E(k)=[e1(k),e1(k-1)]T其中,Kp(k)、Ki(k)分别为k时刻PI控制器的比例、微分参数,e1(k)为k时刻参考轨迹值与实际输出值之间的误差,T为矩阵的转置符号;
综合上述式子,可得:
进一步可以得到:
Kp(k)=-w2(k)
Ki(k)=w1(k)-KP(k)
2-f.得到PI控制器的参数Kp(k)、Ki(k)以后构成控制量u(k)作用于被控对象,u(k)=u(k-1)+Kp(k)(e1(k)-e1(k-1))+Ki(k)e1(k);
2-h.在下一时刻,依照2-b到2-f中的步骤继续求解PI控制器新的参数kP(k+1)、ki(k+
1)的值,依次循环。