1.一种多传感器平台的多目标定位跟踪方法,其特征在于该方法包括以下步骤:步骤1.系统建模,具体是:
1.1给出线性多传感器多目标系统,如下:
其中,xk是目标状态向量, pk,x,pk,y分别为k时刻目标在直角坐标平面上的X轴和Y轴上的坐标, 分别为k时刻目标在直角坐标平面上的X轴和Y轴方向上的速度,Ak是目标状态转移矩阵,Bk是噪声矩阵,zk+1是系统量测,θk+1是观测矩阵;
wk,vk+1分别为过程噪声和量测噪声,服从标准的高斯分布;
1.2传感器方程以及目标预测点到传感器方程的最小距离方程模型为:y=K*x+b
其中,K为传感器方程的斜率,(x,y)为传感器方程上点的坐标,b为传感器方程截距,表示k时刻目标j的预测值到传感器i与目标构成的传感器方程之间的距离, 为k时刻目标j的预测值到传感器i与目标构成的传感器方程的斜率,bk,i是一个传感器i所构成的传感器方程的截距,xk,j和yk,j为预测点的位置;
1.3选择三个传感器和五个目标作为模型,在上述的最小距离方程模型中,对每一个目标j处都选择距离最小的三个方程;
步骤2.定位跟踪系统的方程优化,具体是:
2.1观测方程的优化;
针对被动传感器观测方程,给出如下所示的表示:yk=Hk,1-1Hk,2公式推导过程如下:
Kk,1=tan(zk,1)Kk,2=tan(zk,2)Kk,3=tan(zk,3)
其中,Kk,1,Kk,2,Kk,3是k时刻选择的传感器斜率,bk,1,bk,2,bk,3则为k时刻传感器的截距,yk,1,yk,2,yk,3为三个传感器方程相交的估计目标在直角坐标平面上的位置,zk,1,zk,2,zk,3为系统量测;
步骤3.观测方程的进一步优化;
3.1在由目标预测值选取三个最小距离传感器方程时,当有两个方程来自同一个传感器则舍弃任意一个,此时系统的观测方程如下所示:Kk,1=tan(zk,1)Kk,2=tan(zk,2)
yk=Hk,1-1Hk,2其中,Kk,1,Kk,2是k时刻选择的传感器斜率,bk,1,bk,2则为k时刻传感器的截距,yk为两个方程相交的估计目标在直角坐标平面上的位置;
步骤4.系统方程算法选取;
依据如上优化问题获取目标量测之后,接下来需要考虑算法选取问题,在多传感器多目标定位跟踪系统中选取无味滤波算法。