欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2014108494103
申请人: 江苏理工学院
专利类型:发明专利
专利状态:已下证
专利领域: 计算;推算;计数
更新日期:2024-01-05
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种船舶冲突预警方法,其特征在于包括如下几个步骤:

①通过海面雷达获得船舶的实时和历史位置信息,各船舶的位置信息为离散二维位置序列x'=[x1',x2',...,xn']和y'=[y1',y2',...,yn'],通过应用小波变换理论对原始离散二维位置序列x'=[x1',x2',...,xn']和y'=[y1',y2',...,yn']进行初步处理,从而获取船舶的去噪离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn];

②在每一采样时刻对船舶轨迹数据预处理,依据所获取的船舶去噪离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的船舶离散位置序列Δx=[Δx1,Δx2,...,Δxn-1]和Δy=[Δy1,Δy2,...,Δyn-1],其中Δxi=xi+1-xi,Δyi=yi+1-yi,i=1,2,...,n-1;

③在每一采样时刻对船舶轨迹数据聚类,对处理后新的船舶离散二维位置序列Δx和Δy,通过设定聚类个数M',采用K-means聚类算法分别对其进行聚类;

④在每一采样时刻对船舶轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的船舶运行轨迹数据Δx和Δy视为隐马尔科夫过程的显观测值,通过设定隐状态数目N和参数更新时段τ',依据最近的T'个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ';

⑤在每一采样时刻依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;

⑥在每一采样时刻,通过设定预测时域W,基于船舶当前时刻的隐状态q,获取未来时段船舶的位置预测值O,从而在每一采样时刻滚动推测到未来时段内船舶的轨迹;

⑦在每一采样时刻,基于各船舶的运行状态和设定的船舶在海域内运行时需满足的安全规则集,当船舶间有可能出现违反安全规则的状况时,对其动态行为实施监控并为海上交通控制中心提供及时的告警信息;

所述步骤⑤中采用Viterbi算法获取当前时刻观测值所对应的隐状态q的过程如下:

5.1)变量赋初值:令g=2,βT′(si)=1,si∈S,δ1(si)=πibi(o1),ψ1(si)=0,其中,其中变量ψg(sj)表示使变量δg-1(si)aij取最大值的船舶航迹隐状态si,参数S表示隐状态的集合;

5.2)递推过程:

5.3)时刻更新:令g=g+1,若g≤T',返回步骤5.2),否则迭代终止并转到步骤5.4);

5.4) 转到步骤5.5);

5.5)最优隐状态序列获取:

5.5.1)变量赋初值:令g=T'-1;

5.5.2)后向递推:

5.5.3)时刻更新:令g=g-1,若g≥1,返回步骤5.5.2),否则终止。