1.基于模糊曲线分析的时间差高斯过程回归软测量建模方法,其特征在于,该方法步骤为:步骤1:收集过程的输入输出变量数据组成历史训练数据库,获取N组样本{X(t),y(t)},t=1,2,…,N,对数据进行预处理,根据过程机理及经验来确定各辅助变量中存在的最大的时滞参数Tmax;
步骤2:对于每个原变量xi,i∈{1,2,…,m},分别扩展为含时滞的输入变量集{xi(t-λ),λ=0,1,…,Tmax},扩展方式为:步骤3:根据模糊曲线分析(FCA)方法确定含时滞输入变量集中每一个变量的重要性程度,确定最优的时滞变量xi(t-di),确定过程为:输入变量集{xi,i=1,2,…,m}及输出变量y,对于输入变量xi,t时刻采集的样本值记作xi(t),对于(xi(t),y(t)),输入变量xi的模糊隶属度函数定义为:对于每一个xi,{Φit,y(t)}提供了一条模糊规则,描述为{if xi isΦit(xi),then y is y(t)},Φit为变量xi关于第t个数据点的输入变量模糊隶属度函数,式(2)选取的是高斯模糊隶属度函数,b取变量xi值域范围的20%;故N个训练样本对应每个变量都有N条模糊规则,在模糊隶属度函数中,每个点对应的{xi(t),y(t)}处,有Φit=1;
对于时延过程,通过引入时滞信息,原变量xi变为Tmax+1维,可表示为xi(t-λ),λ=0,
1,…,Tmax,λ为引入的变量时延值;通过式(3)对扩展后的每个新变量质心去模糊化,可得到第i个变量时延值为λ条件下的模糊曲线Ci,λ;如式(4)所示,di为使模糊曲线Ci,λ覆盖范围最大的λ,Ci,λ(λ)max和Ci,λ(λ)min为模糊曲线上点值域的最大值和最小值;
若得到的Ci,λ(λ)范围越接近y的范围,那么输入变量xi(t-λ)的重要程度越高,对Ci,λ(λ)覆盖范围进行排序,可以得到各自的重要性,由此得到最优时滞变量xi(t-di);
步骤4:利用上一步分析得到的xi(t-di)构成时滞输入集Xd(t)=[x1(t-d1),x2(t-Td2),…,xm(t-dm)] ,重建的软测量训练样本集为{Xd(t),y(t)},如果有新的输入样本X(t+1)到来,则基于历史数据库用同样参数进行重组,并转到步骤5,否则,等待新数据到来;
步骤5:对重组训练集、重组的新数据进行j次时间差分处理,其中j的大小可根据过程的主导变量获得周期和性质确定,差分方式为:然后建立差分输入输出样本之间的高斯过程模型,高斯过程回归GPR算法为:给定训练样本集X∈Rm×N和y∈RN,m为输入变量维数,N为样本数目,输入和输出之间的关系满足:y=f(x)+ε (6)
其中f是未知的函数形式,ε是均值为0,方差为 的高斯噪声;对于一个新输入样本,相应的概率预测输出也满足高斯分布,联合高斯分布为K(X,X)为训练样本间的n维协方差方阵,k(x*,X)=k(X,x*)T是测试样本与训练样本的协方差向量,k(x*,x*)为测试样本的自协方差值,GPR可以选择不同的协方差函数描述样本分布特征,这里选择高斯协方差函数:其中,ν是控制协方差函数的度量;
高斯过程的超参数 可通过极大似然估计得到:
首先将参数Θgp设置为一个合理范围内的随机值,然后用共轭梯度法得到优化的参数,获得最优参数后,对于测试样本x*,可以用式(7)来估计GPR模型的输出值;
步骤6:当t+1时刻的新输入数据到来时,且样本经过时滞信息重组后,采用时间差高斯过程回归(TDGPR)方法,基于yj(t+1-j)得到预测值yj,pred(t+1)的计算方式为:yj,pred(t+1)为t+1时刻的预测值。