1.一种基于DNA萤火虫优化的小波盲均衡方法,其特征在于:包括以下步骤,步骤1,将发射信号a(k)经过传输信道h(k)后得到信号s(k),再加入信道噪声n(k),得到均衡器的接收信号x(k),再把均衡器的接收信号经小波变换WT后作为DNA萤火虫优化方法的输入信号y(k),;
其中,s(k)=h(k)a(k),x(k)=h(k)a(k)+n(k),y(k)=Qx(k),k为非负整数且表示时间序列,Q为小波变换矩阵;
步骤2,通过DNA萤火虫优化方法得到萤火虫种群的最优位置向量,并将其作为均衡器的初始最优权向量c(0),c(0)是k=0时c(k)的值;
所述c(k)的更新公式为
其中,e(k)为误差信号,是由误差函数生成,μ为迭代步长;
为小波变换
的平均功率估计,diag[]表示对角矩阵, 和 分别表示对尺度变换系数mj,k(k)和小波变换系数yj,k(k)的平均功率估计,kj=L/2j-1,(j=1,2,...,J),J为小波分解的最大尺度,L为均衡器的权长;
步骤3,将步骤1所述的输入信号y(k)经过均衡器得到输出信号z(k);
其中,z(k)=y(k)c(k)。
2.根据权利要求1所述的一种基于DNA萤火虫优化的小波盲均衡方法,其特征在于:通过DNA萤火虫优化方法得到萤火虫种群的最优位置向量的步骤如下,步骤2-1,设置DNA萤火虫优化方法的初始种群及参数;
在一个n维搜索空间中,创建一个规模为D的初始萤火虫群的初始位置向量W=[W1,W2,…,WD];其中,Wi表示第i个萤火虫的位置向量,0<i≤D;
每只萤火虫都具有相同的初始荧光素值、初始动态决策范围以及一个随机分配的n维位置向量Wi=(wi1,wi2,…,win),每个初始位置向量对应着一组均衡器权向量系数;
定义最大进化代数sg1,定义最大迭代次数sg2;
步骤2-2,确定适应度函数;
将常模盲均衡方法CMA的代价函数的倒数定义为DNA萤火虫优化方法的适应度函数,其中,J(Wi)为CMA方法的代价函数,RCM为CMA的统计模值;
步骤2-3,计算萤火虫群中每个萤火虫位置向量的适应度函数值并将适应度函数值从大到小排列;
其中,前一半对应的是优质萤火虫种群,后一半则为劣质萤火虫种群;选取适应度函数值最大的位置向量为当前最优位置向量,对应的萤火虫个体为最优萤火虫个体;
步骤2-4,编码;
将萤火虫个体的位置向量转换为十进制位置向量,从而得到了DNA序列位置向量;
步骤2-5,执行交叉操作和变异操作,获得新一代萤火虫群;
产生一个随机数rand1∈(0,1),与置换交叉概率p1比较,若rand1<p1,则执行置换交叉操作;再次产生一个随机数rand2∈(0,1),与转位交叉概率p2比较,若rand2<p2,则执行转位交叉操作;再产生一组与萤火虫个体DNA序列位置向量维数相同的(0,1)上的随机数,这组随机数中的元素与DNA序列位置向量中的元素一一对应,将所有随机数分别与变异概率pm比较,若随机数小于pm,则执行变异操作;
步骤2-6,判断是否达到最大进化代数sg1,如果否,则转至步骤2-7,否则,转至步骤2-
8;
步骤2-7,将新一代萤火虫群中所有萤火虫个体的DNA序列位置向量解码,得到所有萤火虫个体的位置向量,转至步骤2-3;
步骤2-8,获得最优萤火虫群;
步骤2-9,计算最优萤火虫群中所有萤火虫位置向量的适应度函数值,选取适应度函数值最大的位置向量为当前最优位置向量;
步骤2-10,更新萤火虫荧光素值,确定邻域,更新萤火虫位置和动态决策范围,进行适应度函数值计算,选取适应度函数值最大的位置向量为当前最优位置向量;
步骤2-11,比较步骤2-10和步骤2-9中最优位置向量的适应度函数值,取适应度函数值大的位置向量为全局最优位置向量;
步骤2-12,判断是否达到最大迭代次数sg2,如果是,则转至步骤2-13,如果否,则转至步骤2-10;
步骤2-13,获得全局最优位置向量,及对应的最优萤火虫个体。
3.根据权利要求2所述的一种基于DNA萤火虫优化的小波盲均衡方法,其特征在于:编码的具体过程为,步骤2-4-1,由第i个萤火虫的位置向量Wi=(wi1,wi2,…,win)计算得到十进制位置过度向量Bi=(bi1,bi2,…,bin);
其中,wig表示第i个萤火虫的位置向量Wi中第g个位置值,big表示十进制位置过渡向量中第g个位置值,1≤g≤n且g为整数, d为编码长度,Dmaxg和Dming分别为第i个萤火虫的位置向量Wi中第g个位置的最大值和最小值;
步骤2-4-2:将十进制位置过渡向量中第g个位置值big转换成一串四进制数sig,则第i个萤火虫的DNA序列位置向量 由n串四进制数组成;
其中,长度为d, 表示第i个萤火虫的DNA序列位置向量Si中第g个子整数串中第t′位的数字,1≤t′≤d且t′为整数,d为串的长度。
4.根据权利要求3所述的一种基于DNA萤火虫优化的小波盲均衡方法,其特征在于:交叉操作和变异操作的具体过程为,置换交叉操作:从DNA序列位置向量中任意选取两个作为父体,从两个父体中随机选取相同位置的交叉点,并将交叉点间的碱基串的位置进行互换,在交叉完成后,从两个新的序列位置向量中分别随机选取一段碱基数目相等的转座子序列位置向量,并进行置换,最终产生两个新的序列位置向量代替父体;
转位交叉操作:从DNA序列位置向量中任意选取一个作为父体,从父体中截取一段任意碱基数目的转座子序列位置向量插入截取后父体的任意位置,产生一个新的序列位置向量代替父体;
变异操作:从DNA序列位置向量中任意选取一个序列位置向量,将该序列位置向量中任一碱基以概率pm被其它碱基代替,从而产生一个新的序列位置向量。
5.根据权利要求4所述的一种基于DNA萤火虫优化的小波盲均衡方法,其特征在于:选取父体时,从优质种群选取。
6.根据权利要求3所述的一种基于DNA萤火虫优化的小波盲均衡方法,其特征在于:DNA序列位置向量解码具体过程为,步骤2-7-1,将第i个萤火虫的DNA序列位置向量
解码为十进制位置过渡向量Bi=(bi1,bi2,…,bin),步骤2-7-2:通过以下公式按比例将big转换成第i个萤火虫的位置向量Wi中第g个位置值wig;
7.根据权利要求2所述的一种基于DNA萤火虫优化的小波盲均衡方法,其特征在于:萤火虫的邻域确定的具体过程为,步骤2-10-1,首先通过以下公式确定第i个萤火虫在第t次迭代寻优时的荧光素值li(t);
li(t)=(1-ρ)li(t-1)+βF(Wi(t))其中,ρ∈(0,1)为荧光素挥发率,β表示荧光素的更新率,F(Wi(t))表示适应度函数值,Wi(t)表示第i个萤火虫在第t次迭代寻优时的位置向量;
步骤2-10-2,其次通过以下公式确定第i个萤火虫在第t次迭代寻优时的邻域Ni(t);
Ni(t)={i′:||Wi′(t)-Wi(t)||<Ri(t);li′(t)>li(t)}其中,|| ||为范数,0<i′≤D,Ri(t)为第i个萤火虫在第t次迭代寻优时的动态决策域范围。
8.根据权利要求2所述的一种基于DNA萤火虫优化的小波盲均衡方法,其特征在于:步骤2-10中萤火虫的动态决策域确定的具体过程为,动态决策域的半径按以下公式进行调整;
Ri(t+1)=min{Rs,max{0,Ri(t)+γ(nt-|Ni(t)|)}}其中,Ri(t+1)为第i个萤火虫在第t+1次迭代寻优过程中的动态决策域的半径,Rs为萤火虫的可视范围,γ为邻域变化率,nt为邻居阈值。