1.一种基于手机信令数据和导航路线数据的手机用户出行方式识别方法,其特征在于:该方法包括以下步骤:
S1:获取某手机用户一段时间内的手机信令数据,并对手机信令数据按时间先后顺序排序,形成手机用户出行轨迹序列;
S2:根据驻留点将用户出行轨迹序列切割为多个有效出行段:按照停留时间,识别出此手机用户出行轨迹序列中的驻留点,根据驻留点将出行轨迹序列切割为各有效出行段,其中驻留点为手机用户停留时长超过一定阈值的单个基站或相邻的多个基站;
S3:根据用户出行直线距离以及直线移动速度对其出行方式进行初步判断;
S4:根据步骤S3的判别结果,提取对应的导航路线数据;
S5:利用基于密度的聚类算法DBSCAN(Density-Based Spatial Clustering of Applications with Noise)分析得到各导航路线与用户此有效出行段的基站序列的匹配度,取匹配度最大的导航路线为用户此有效出行段的出行路线,且此导航路线对应的交通方式为用户的出行方式;
所述步骤S3具体包括:获取某有效出行段P的起点和终点,计算起点与终点之间的直线距离Lp;获取用户通过P所花费的时长Tp,计算用户直线移动速度Vp=Lp/Tp;根据用户直线移动速度Vp,对出行方式进行初次判别,判别为高速出行方式和低速出行方式,其中高速出行方式包括公共交通与私人机动车,公共交通包括公交车与轨道交通,低速出行方式包括自行车与步行;
所述步骤S4具体包括:若为高速出行方式,则提取出以驾车和公共交通的出行方式从有效出行段P的起点到终点的导航路线;若为低速出行方式,则提取以驾车、公共交通、自行车和步行交通方式从有效出行段P的起点到终点的导航路线;设获取到的导航路线集合为G={g1,g2,g3,…,gi,…,gn},gi表示第i个导航路线;其中导航路线数据包含从起点到终点所需要经过的道路沿线的经纬度坐标点L={l1,l2,l3,…,li,…,ln},li表示第i个导航路线gi对应的经纬度坐标数据集、路程S={s1,s2,s3,…,si,…,sn},S表示路程集合,si表示第i个导航路线gi对应的从有效出行段P的起点到终点的路程、交通方式Y={y1,y2,y3,…yi,…yn},Y表示交通方式集合,yi表示gi对应的交通方式,以及花费时长D={d1,d2,d3,…di,…,dn},D表示花费时长集合,di表示gi对应的花费时长;
所述步骤S5具体包括:
S51:设有效出行段P的基站坐标集合为B,使用基于密度的聚类算法DBSCAN对li中的经纬度坐标点和B中的基站坐标点进行聚类;设聚类算法搜索领域半径为Eps,最小包含点数为minPts;各聚类对象之间的距离为经纬度坐标点之间的距离;聚类得到m个坐标点的簇C={c1,c2,c3,…,ct,…,cm},C为簇的集合,ci为第i个簇;
S52:获取C中含有li坐标点的簇CL={ci,cj,……,ck},其中CL包含于C,i、j、k小于m,统计CL各簇中属于集合B中的坐标点的个数Nli;设B中坐标点的个数为Nb,计算Nli与Nb的比率rli,rli=Nli/Nb;由此得到各导航路线与用户此有效出行段的基站序列的匹配度R={rl1,rl2,rl3,…,rli,…rln};
S53:比较各导航路线的匹配度,若R中存在唯一的最大值,则取匹配度最大的导航路线grmax为用户此有效出行段P所走路线,且其出行路线为grmax对应的出行方式yrmax,路程为srmax;若R中存在多个最大值,则转到步骤S54;
S54:将匹配度最大的导航路线视为观察路线,则观察路线集合Gd={gd1,gd2,gd3,…,gdi,…gds},Gd包含于G,ds≤n,对于某些路段可采用多种交通方式,所以存在交通方式不同但路线相同的导航路线;获取Gd中gdi花费时长ddi以及用户此有效出行段P实际花费时长Tp,计算Tp与ddi的差值todi,todi=Tp-ddi;则TO={tod1,tod2,tod3,…todi,…tods},比较TO中各值,确定todi最小的导航线路为用户所走线路gtomin,用户所采用的出行方式为ytomin,出行路程为stomin。