欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2017101826597
申请人: 杭州电子科技大学
专利类型:发明专利
专利状态:已下证
专利领域: 计算;推算;计数
更新日期:2024-01-05
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种基于深度学习的图像哈希编码方法,其特征在于包括如下步骤:步骤1、采用在ImageNet图像识别数据库上训练好的图像分类模型GoogLeNet作为初始化的基本网络结构,并将GoogLeNet模型的最后一层分类层替换为哈希层,该哈希层的单元数即为图像要编码成的比特数;

步骤2、对GoogLeNet模型的参数进行优化;

2-1.每次迭代将从图像检索数据集中选取的50幅图像,作为GoogLeNet模型的输入;并且将图像上人工标注的标签信息同时作为GoogLeNet模型的输入,用于判断图像间的相似性;共迭代M次;

2-2.在每次迭代中,将从图像检索数据集中选取的50幅图像随机两两组合构成成对图像,并通过成对图像的标签信息判断两幅图像是否相似,从而对成对图像进行损失计算;

2-3.根据每幅图像输入进GoogLeNet模型得到的二值码,进行二值码均匀分布损失的计算和量化损失的计算;

2-4.计算出每一次迭代的图像的所有损失,即成对图像损失、二值码均匀分布损失和量化损失的累加;然后使用随机梯度下降算法和反向传播算法来对GoogLeNet模型的参数进行更新,迭代进行M次后,得到了优化好的GoogLeNet模型;

步骤3、将图像检索数据集中的图像输入至优化好的GoogLeNet模型,并将GoogLeNet模型输出的浮点数量化为二值码,从而得到每幅图像的二值码。

2.根据权利要求1所述的一种基于深度学习的图像哈希编码方法,其特征在步骤2中所述的成对图像的损失通过如下损失函数计算:其中,设输入的成对图像分别为I1,I2,其对应的二值码为b1,b2;S表示两幅图像是否相似,若相似,S=1;否则,S=0;H(·,·)表示两个二值码间的海明距离,如果两幅图像是相似图像,则损失等于其二值码间的海明距离,否则当两幅图像不相似时,定义一个阈值t,若海明距离小于该阈值时,才对该损失函数有贡献;

由于上式(1)二值码是离散取值,直接优化困难,因此将整数限制变为范围限制{-1,+

1}->[-1,+1],海明距离变为欧式距离,GoogLeNet模型得到浮点数输出,公式(1)更新为:对公式(2)的梯度进行计算如下:

当S=1时,

当S=0时,

3.根据权利要求2所述的一种基于深度学习的图像哈希编码方法,其特征在步骤2中所述的二值码均匀分布损失的计算如下:将压缩的二值码均匀分布,当二值码中-1和+1出现的概率都为50%时,熵最大信息量最多,所以该均匀分布损失函数定义为:其中,q表示二值码的长度,即哈希层的单元数;n为图像数量,即得到的二值码数量,bi(j)表示第i个二值码的第j个比特。

4.根据权利要求3所述的一种基于深度学习的图像哈希编码方法,其特征在步骤2所述的二值码量化的损失通过如下损失函数计算:由于GoogLeNet模型的哈希层的输出为浮点数,因此需要通过量化得到二值码,量化过程如下:b=sign(v), (6)

其中,v表示GoogLeNet模型的输出;为了减小从欧式空间到海明空间映射导致的量化误差,需要一个量化损失函数:用于计算最后一层哈希层的值与量化该哈希层后的值的差,即每个单元量化前与量化后的值相减,具体量化损失函数如下:其中,如果vi>0,则b=1;否则,b=-1,其中,vi表示二值码的第i个比特。