欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 201710209483X
申请人: 江苏理工学院
专利类型:发明专利
专利状态:已下证
专利领域: 铁路
更新日期:2024-01-05
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种基于鲁棒策略的地铁交通冲突预警方法,其特征在于包括如下步骤:

步骤A、根据各个列车的计划运行参数,生成轨道交通网络的拓扑结构图;

步骤B、基于步骤A所构建的轨道交通网络的拓扑结构图,分析列车流的可控性和敏感性二类特性;

步骤C、根据各个列车的计划运行参数,在构建列车动力学模型的基础上,依据列车运行冲突耦合点建立列车运行冲突预调配模型,生成多列车无冲突运行轨迹;

步骤D、在每一采样时刻t,基于列车当前的运行状态和历史位置观测序列,对列车未来某时刻的行进位置进行预测;其具体过程如下:步骤D1、列车轨迹数据预处理,以列车在起始站的停靠位置为坐标原点,在每一采样时刻,依据所获取的列车原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的列车离散位置序列△x=[△x1,△x2,...,△xn-1]和△y=[△y1,△y2,...,△yn-1],其中△xi=xi+1-xi,△yi=yi+1-yi(i=1,2,...,n-1);

步骤D2、对列车轨迹数据聚类,对处理后新的列车离散二维位置序列△x和△y,通过设定聚类个数M',采用遗传聚类算法分别对其进行聚类;

步骤D3、对聚类后的列车轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的列车运行轨迹数据△x和△y视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段τ',依据最近的T'个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ';具体来讲:由于所获得的列车轨迹序列数据长度是动态变化的,为了实时跟踪列车轨迹的状态变化,有必要在初始轨迹隐马尔科夫模型参数λ'=(π,A,B)的基础上对其重新调整,以便更精确地推测列车在未来某时刻的位置;每隔时段τ',依据最新获得的T'个观测值(o1,o2,...,oT')对轨迹隐马尔科夫模型参数λ'=(π,A,B)进行重新估计;

步骤D4、依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;

步骤D5、每隔时段 根据最新获得的隐马尔科夫模型参数λ'=(π,A,B)和最近H个历史观测值(o1,o2,...,oH),基于列车当前时刻的隐状态q,在时刻t,通过设定预测时域h',获取未来时段列车的位置预测值O;

步骤E、建立从列车的连续动态到离散冲突逻辑的观测器,将地铁交通系统的连续动态映射为离散观测值表达的冲突状态;当系统有可能违反交通管制规则时,对地铁交通混杂系统的混杂动态行为实施监控,为地铁交通控制中心提供及时的告警信息;

所述步骤E的具体实施过程如下:

步骤E1、构造基于管制规则的冲突超曲面函数集:建立超曲面函数集用以反映系统的冲突状况,其中,冲突超曲面中与单一列车相关的连续函数hI为第I型超曲面,与两列车相关的连续函数hII为第II型超曲面;

步骤E2、建立由列车连续状态至离散冲突状态的观测器,构建列车在交通路网内运行时需满足的安全规则集dij(t)≥dmin,其中dij(t)表示列车i和列车j在t时刻的实际间隔,dmin表示列车间的最小安全间隔;

步骤E3、基于人-机系统理论和复杂系统递阶控制原理,根据列车运行模式,构建人在环路的列车实时监控机制,保证系统的运行处于安全可达集内,设计从冲突到冲突解脱手段的离散监控器,当观测器的离散观测向量表明安全规则集会被违反时,立刻向地铁交通控制中心发出相应的告警信息。

2.一种用于冲突预警的地铁交通流优化控制系统,其特征在于:包括线路拓扑结构生成模块、数据传输模块、车载终端模块、控制终端模块以及轨迹监视模块,轨迹监视模块收集列车的状态信息并提供给控制终端模块;

所述控制终端模块包括以下子模块:

列车运行前无冲突轨迹生成模块:根据列车计划运行时刻表,首先建立列车动力学模型,然后依据列车运行冲突耦合点建立列车运行冲突预调配模型,最后生成无冲突列车运行轨迹;

列车运行中短期轨迹生成模块:依据轨迹监视模块提供的列车实时状态信息,利用数据挖掘模型,推测未来时段内列车的运行轨迹;

列车运行态势监控模块:在每一采样时刻t,基于列车的轨迹推测结果,当列车间有可能出现违反安全规则的状况时,对其动态行为实施监控并为控制终端提供告警信息;

列车避撞轨迹优化模块:当列车运行态势监控模块发出告警信息时,在满足列车物理性能、区域容流约束和轨道交通调度规则的前提下,通过设定优化指标函数,采用自适应控制理论方法由控制终端模块对列车运行轨迹进行规划,并通过数据传输模块将规划结果传输给车载终端模块执行;列车避撞轨迹优化模块包含内层规划和外层规划两类规划;

上述用于冲突预警的地铁交通流优化控制系统进行冲突预警的方法包括如下步骤:步骤A、根据各个列车的计划运行参数,生成轨道交通网络的拓扑结构图;

步骤B、基于步骤A所构建的轨道交通网络的拓扑结构图,分析列车流的可控性和敏感性二类特性;

步骤C、根据各个列车的计划运行参数,在构建列车动力学模型的基础上,依据列车运行冲突耦合点建立列车运行冲突预调配模型,生成多列车无冲突运行轨迹;

步骤D、在每一采样时刻t,基于列车当前的运行状态和历史位置观测序列,对列车未来某时刻的行进位置进行预测;其具体过程如下:步骤D1、列车轨迹数据预处理,以列车在起始站的停靠位置为坐标原点,在每一采样时刻,依据所获取的列车原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的列车离散位置序列△x=[△x1,△x2,...,△xn-1]和△y=[△y1,△y2,...,△yn-1],其中△xi=xi+1-xi,△yi=yi+1-yi(i=1,2,...,n-1);

步骤D2、对列车轨迹数据聚类,对处理后新的列车离散二维位置序列△x和△y,通过设定聚类个数M',采用遗传聚类算法分别对其进行聚类;

步骤D3、对聚类后的列车轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的列车运行轨迹数据△x和△y视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段τ',依据最近的T'个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ';具体来讲:由于所获得的列车轨迹序列数据长度是动态变化的,为了实时跟踪列车轨迹的状态变化,有必要在初始轨迹隐马尔科夫模型参数λ'=(π,A,B)的基础上对其重新调整,以便更精确地推测列车在未来某时刻的位置;每隔时段τ',依据最新获得的T'个观测值(o1,o2,...,oT')对轨迹隐马尔科夫模型参数λ'=(π,A,B)进行重新估计;

步骤D4、依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;

步骤D5、每隔时段 根据最新获得的隐马尔科夫模型参数λ'=(π,A,B)和最近H个历史观测值(o1,o2,...,oH),基于列车当前时刻的隐状态q,在时刻t,通过设定预测时域h',获取未来时段列车的位置预测值O;

步骤E、建立从列车的连续动态到离散冲突逻辑的观测器,将地铁交通系统的连续动态映射为离散观测值表达的冲突状态;当系统有可能违反交通管制规则时,对地铁交通混杂系统的混杂动态行为实施监控,为地铁交通控制中心提供及时的告警信息;

所述步骤E的具体实施过程如下:

步骤E1、构造基于管制规则的冲突超曲面函数集:建立超曲面函数集用以反映系统的冲突状况,其中,冲突超曲面中与单一列车相关的连续函数hI为第I型超曲面,与两列车相关的连续函数hII为第II型超曲面;

步骤E2、建立由列车连续状态至离散冲突状态的观测器,构建列车在交通路网内运行时需满足的安全规则集dij(t)≥dmin,其中dij(t)表示列车i和列车j在t时刻的实际间隔,dmin表示列车间的最小安全间隔;

步骤E3、基于人-机系统理论和复杂系统递阶控制原理,根据列车运行模式,构建人在环路的列车实时监控机制,保证系统的运行处于安全可达集内,设计从冲突到冲突解脱手段的离散监控器,当观测器的离散观测向量表明安全规则集会被违反时,立刻向地铁交通控制中心发出相应的告警信息。

我要求购
我不想找了,帮我找吧
您有专利需要变现?
我要出售
智能匹配需求,快速出售