欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2017103106406
申请人: 浙江工业大学
专利类型:发明专利
专利状态:已下证
专利领域: 计算;推算;计数
更新日期:2023-12-11
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种多目标优化的混合作业车间布局方法,其特征在于具体步骤如下:步骤1:构建多目标混合作业车间布局模型

1.1构建多目标函数

在布局时假设车间和作业单元均为矩形结构,车间大小和作业单元大小均已知,车间的长度为a,宽度为b;作业单元i的长度为Li,宽度为Wi;

1)物料搬运成本最小

式中:n为布局的作业单元数目;cij为作业单元i到作业单元j的物料搬运成本;fij为作业单元i到作业单元j的总物料搬运件数;dij为作业单元i到作业单元j的物料搬运距离;

2)作业单元移动成本最小

式中:dio表示作业单元i前后移动的曼哈顿距离,即dio=|xi‑xi_o|+|yi‑yi_o|,xi为作业单元i移动后的x坐标值,xi_o为作业单元i移动前的x坐标值,yi为作业单元i移动后的y坐标值,yi_o为作业单元i移动前的y坐标值;mi表示作业单元i的移动成本;

3)作业单元包络矩形面积最小

min F3=L×W        (3)式中:L为包络所有作业单元矩形的长度,W为包络所有作业单元矩形的宽度;

4)作业单元非物流关系最大化

最大化优化目标可以转换成最小化优化目标,故:式中:Z是一个较大的正数,保证F4为正数即可;aij为作业单元间的非物流关系邻接度值,bij为作业单元间的非物流关系邻接度因子;

考虑到第一个优化目标和第二个优化目标单位一致,因此,上述四个目标可以转化为三个优化目标,即:

1.2约束条件

1)间距约束:任意两个作业单元在x轴方向或者y轴方向上至少有一个方向保留一定间距,即满足(6)式或者(7)式中的一个即可;其中(xi,yi)为作业单元i在车间位置,(Li,Wi)为作业单元i的长度和宽度;其中(xj,yj)为作业单元j在车间位置,(Lj,Wj)为作业单元j的长度和宽度;

hmin为作业单元间横向最小距离,vmin为作业单元间纵向最小距离;

2)边界约束:各个作业单元在车间布局时,不能超出车间;

3)特定约束:指大型混合作业车间中的特殊作业单元需满足的一些特定条件,在布局时对该单元进行预置;

Ps={(xi,yi)|xi=xs,yi=ys}       (10)(xs,ys)为特殊作业单元Ps的预定位置;

1.3作业单元间的距离

当两个作业单元之间无其他障碍单元时,其曼哈顿距离为:dij=|xi‑xj|+|yi‑yj|          (11)当作业单元之间有其他作业单元挡道时,对曼哈顿距离进行修正:作业单元k是物料搬运路线上的障碍物,d1、d2、d3、d4为四条可选路径;其中(xk,yk)为作业单元k在车间的位置,(Lk,Wk)为作业单元k的长度和宽度;

步骤2 基于动态差分元胞多目标遗传算法(DDECell)的车间布局优化步骤:

2.1随机生成初始种群

采用实数制编码生成初始种群为:[(U1,…,Un),(x1,…xn),(y1,…yn)];

其中Un表示第n个作业单元;xn和yn表示第n个作业单元的坐标;(U1,…,Un)是n个作业单元的全排列;

2.2选择父本

基于秩与拥挤距离,从当前个体的Moore型邻居结构中,通过二元锦标赛选出当前个体的两个父本:当两个邻居个体的秩不同时,选择秩小的邻居个体作为当前个体的父本;当两个邻居个体的秩相同时,则选择拥挤距离大的个体作为当前个体的父本;

2.3变异交叉

设种群规模为N,d为解空间的维数,父本由当前个体和两个邻居构成,xr1、xr2、xr3为三个父本,vi为xr1经过变异后得到的变异向量,ui是交叉操作后获得的向量;F为介于[0,1]间的缩放因子;randi[j]为[0,1]之间均匀分布的随机数,randi∈[n+1,n+2,…,d],CR为介于[0,1]的交叉常量;

vi[j]=xr1[j]+F(xr2[j]‑xr3[j]),i∈[1,N],j∈[n+1,d]        (13)vi[j]、xr1[j]、xr2[j]、xr3[j]、ui[j]分别为vi、xr1、xr2、xr3,ui的第j维决策变量;

当abs(xr2[j]‑xr3[j])小于某个值时,采用动态变异:vi[j]=xr1[j]+(2rand(1)‑1)S           (15)其中S=α(xr1[j]‑u‑xr1[j]‑l)是变异步长,xr1[j]‑u、xr1[j]‑l分别为xr1第j维决策变量的最大值与最小值;α是用于控制变异步长大小的系数;

2.4子代评估

计算子代的目标函数值;如果子代支配当前个体,或者子代与当前个体互不支配,但子代的拥挤距离大于当前个体的拥挤距离,则将子代替换当前个体;同时将这个子代加入外部文档;一旦非支配个体的数量超出了外部文档的规模,则将拥挤距离最小的个体删除;

2.5重复步骤2.2~2.4,完成网格中所有个体的进化操作;

2.6种群更新:

在每一代进化结束后,从外部文档选一些个体代替相同数量的二维环形网格中的个体;继续进化,直至满足进化的终止条件。