1.一种基于风力检测的窗帘状态转换方法,所述方法包括使用基于风力检测的窗帘状态转换平台以基于环境参数实现对窗帘状态的自动转换,所述基于风力检测的窗帘状态转换平台包括风力检测设备、图像采集设备、电机驱动设备以及嵌入式处理设备,所述嵌入式处理设备分别与所述风力检测设备、所述图像采集设备和所述电机驱动设备连接,所述风力检测设备用于检测吹过窗帘的实时风速,所述图像采集设备用于对窗帘外的场景进行高清场景图像采集以获得高清场景图像,所述电机驱动设备用于通过直流电机来控制窗帘的打开状态与收起状态之间的切换;
其中,所述嵌入式处理设备基于所述风力检测设备的输出和所述图像采集设备的输出确定发送给所述电机驱动设备的控制信号。
2.如权利要求1所述的方法,其特征在于,所述平台还包括:
对比度增强设备,位于窗帘支架内部,与所述图像采集设备连接,用于接收高清场景图像,并对高清场景图像执行对比度增强处理以获得增强图像。
3.如权利要求2所述的方法,其特征在于,所述平台还包括:
均方差检测设备,用于接收增强图像,基于增强图像的各个像素点的像素值确定增强图像像素值的均方差以作为目标均方差输出。
4.如权利要求3所述的方法,其特征在于,所述平台还包括:
信噪比检测设备,用于接收增强图像,对增强图像进行噪声分析,以获得噪声幅值最大的主噪声信号和噪声幅值次大的次噪声信号,基于主噪声信号、次噪声信号以及增强图像确定增强图像的信噪比以作为目标信噪比输出,还用于对增强图像进行场景判断以确定增强图像内像素点像素值的分布情况,基于所述分布情况对增强图像中每一个像素点进行像素值分析以确定是否为噪声点,将增强图像内各个噪声点组成多个噪声区域,确定每一个噪声区域的面积和形状,并将各个噪声区域的面积汇总以获取噪声区域总面积;
改进型中值滤波设备,分别与均方差检测设备以及信噪比检测设备连接,用于在目标信噪比小于等于预设信噪比阈值且目标均方差大于等于预设均方差阈值时,从省电状态进入工作状态,接收每一个噪声区域的形状,基于每一个噪声区域的形状的几何特征,将每一个噪声区域拆分成多个基准子区域,每一个基准子区域的形状为方形、圆形或线形,对每一个噪声区域,针对其被拆分后的各个基准子区域,选择对应的中值滤波模板分别执行中值滤波,以获得各个子区域滤波图案,并将各个子区域滤波图案组合成滤波后的噪声区域子图像,并将增强图像中的非噪声区域与各个噪声区域子图像组合以获得中值滤波图像;
高斯滤波设备,分别与改进型中值滤波设备、均方差检测设备以及信噪比检测设备连接,用于在目标信噪比小于等于预设信噪比阈值且目标均方差大于等于预设均方差阈值时,从省电状态进入工作状态,接收中值滤波图像并对中值滤波图像进行高斯滤波处理以获得高斯滤波图像;
人体识别设备,与高斯滤波设备连接,用于接收高斯滤波图像,对高斯滤波图像,用于基于人体上限灰度阈值和人体下限灰度阈值识别高斯滤波图像中的人体像素,基于高斯滤波图像中的所有人体像素组成人体子图像,当人体子图像的面积与所述高斯滤波图像的面积的比例大于等于预设比例阈值时,发出识别人体信号,否则,发出其他目标信号;
其中,在增强图像内,多个噪声区域之外的区域为非噪声区域;
其中,增强图像内像素点像素值的分布情况包括针对每一个像素点在增强图像内的所在区域确定该像素点像素值应归属的像素值范围;
其中,所述嵌入式处理设备分别与所述人体识别设备和所述风力检测设备连接,用于在接收到所述识别人体信号时,向所述电机驱动设备发送收起控制信号,同时停止基于所述风力检测设备的输出向所述电机驱动设备发送控制信号;所述嵌入式处理设备还用于在接收到所述其他目标信号时,恢复基于所述风力检测设备的输出向所述电机驱动设备发送控制信号。
5.如权利要求4所述的方法,其特征在于:
所述嵌入式处理设备基于所述风力检测设备的输出向所述电机驱动设备发送控制信号包括:当接收到所述风力检测设备输出的风速过快信号时,向所述电机驱动设备发送收起控制信号。
6.如权利要求5所述的方法,其特征在于:
所述嵌入式处理设备基于所述风力检测设备的输出向所述电机驱动设备发送控制信号还包括:当接收到所述风力检测设备输出的风速正常信号时,向所述电机驱动设备发送打开控制信号。
7.如权利要求6所述的方法,其特征在于:
当基准子区域的形状为方形时,每一个基准子区域的大小为3×3、5×5或7×7,当基准子区域的形状为圆形时,每一个基准子区域的半径为3像素、5像素或7像素,当基准子区域的形状为线形时,每一个基准子区域为一个一维像素集合。
8.如权利要求7所述的方法,其特征在于:
所述对比度增强设备、所述均方差检测设备、所述信噪比检测设备、所述改进型中值滤波设备、所述高斯滤波设备以及所述人体识别设备分别采用不同的片上芯片SOC来实现。