1.一种基于稀疏独立分量分析的谐波阻抗估算方法,其特征在于,包括以下步骤:步骤1:基于诺顿等效电路和叠加定理,电力系统谐波阻抗估算分析公共耦合点处的系统谐波阻抗和用户谐波阻抗;系统侧和用户侧的诺顿等效电路模型的公共耦合点处的谐波电压和谐波电流的关系式为:式中,Vpcc和Ipcc分别为公共耦合点处的量测谐波电压和量测谐波电流,Zs和Zc分别为未知系统侧和用户侧等效谐波阻抗,Is和Ic分别为未知系统侧和用户侧等效谐波电流;
令:
其中,Y为2×P阶量测谐波电压和量测谐波电流矩阵,Z为2×2阶谐波阻抗矩阵,I为2×P阶未知谐波源矩阵;
步骤2:采用稀疏独立分量分析对公共耦合点处的量测谐波电压和量测谐波电流进行分解,求得谐波阻抗矩阵;其数学模型为:X=AS
式中,X是M×T阶已知混合量测信号,A是M×N阶未知混合矩阵,S是N×T阶未知源信号;
将上式改写为:
S=A-1X=WX
式中,W=A-1,为分离矩阵,即混合矩阵A的逆矩阵;
将X=AS与Y=ZI比较,采用稀疏独立分量分析求解谐波阻抗矩阵;
所述步骤2中,混合量测信号X由量测谐波电压和量测谐波电流组成,未知源信号S由未知谐波源组成;为去除混合量测信号的均值,避免由于数据相差较大引起的误差,对X进行中心化处理:式中, 为中心化处理后的混合量测信号,mean表示求混合量测信号的均值;
为消除混合量测信号之间的相关性,减小工作量,再对中心化处理后的混合量测信号进行白化处理:式中,X0为白化处理后的混合量测信号,W0为白化矩阵,通过混合量测信号协方差矩阵的特征值和特征向量求得;
基于最小互信息的独立分量分析算法以互信息为代价函数,选择分离矩阵使得估计未知源信号S的互信息取得最小值;互信息定义为联合密度函数与边缘密度函数乘积之间的KL散度;基于最小互信息的独立分量分析算法的代价函数如下式所示:式中,wm为W的行向量,即W=(w1,…,wN)T; 表示第m个估计源信号,H(ym)为第m个估计源信号的熵;hm为与W中除去wm的所有行向量垂直的单位向量;Cm为常数;
将上式对wm求导:
式中, 为评价函数,且p(ym)为第m个估计源信号的概率密度函数,E表示均值运算;
源信号的稀疏性用l1范数表示,l1范数定义为向量系数的绝对值之和;将稀疏性整合到基于最小互信息的独立分量分析算法中,如下式所示:J(wm)=JICA(wm)+λmf(ym),m=1,…,N其中,f(ym)=||ym||1为正则项,且λm为稀疏参数;l1范数为不可微分函数,因此,用多个二次函数的和来表示,如下式所示:其中,ε为平滑参数;
将J(wm)对wm求导:
采用牛顿迭代法进行迭代分离,分离的目标是互信息最小化,通过对互信息最小近似值E{g(WTZ)}优化求得;简化迭代公式如下式所示:式中,g为非线性函数,i为迭代次数;当||Wi||没有变化或者变化很小时,认为完成了分离,即求得了分离矩阵W,并最终求得谐波阻抗矩阵Z。