欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2018103719908
申请人: 浙江工业大学
专利类型:发明专利
专利状态:已下证
专利领域: 计算;推算;计数
更新日期:2023-08-24
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种基于SSD网络的裂纹舌识别方法,其特征在于,所述方法包括对采集到的舌象进行舌体分割的预处理操作、基于深度卷积神经网络的舌象整体特征提取和对裂纹区域进行预测的候选框生成方法,完成对舌象中裂纹区域的确定,并通过置信度过滤来判别其是否为裂纹舌;

所述的对采集到的舌象进行舌体分割的预处理操作,通过构建全卷积网络实现,所述全卷积网络由卷积层、池化层和反卷积层组成,卷积池化层将原始舌象从像素域映射到特征域,进行隐式的特征提取,反卷积层将上一步得到的特征图恢复到原图尺寸,进而对图像中的每个点进行分类实现分割;

所述的基于深度卷积神经网络的舌象整体特征提取,所述深度卷积神经网络由卷积层组成,将上述分割后的舌体作为输入,输入图像在网络中进行层层映射,得到不同的表示形式,提取其抽象特征,从而实现对舌象的深度表示;

所述的对裂纹区域进行预测的候选框生成方法,在不同层次的特征图上生成多种尺度、多种长宽比的默认盒子作为候选框,并将与真实框最吻合的候选框作为正样本,其余候选框都作为负样本;

所述对采集到的舌象进行舌体分割的预处理操作中,分割网络选取VGG16的全卷积形式进行实现,其中包含五层堆叠的卷积池化层,经过五个池化层,输出的特征图尺寸依次变为原来的1/2,故采用了反卷积层将每层的特征图依次进行相应倍数的放大和融合,将特征图恢复到原图尺寸;并将真实分割图作为输入,训练softmax分类器对图像中的每个像素点进行分类,进而实现分割;

所述基于深度卷积神经网络的舌象整体特征提取中,网络使用VGG16‑Atrous作为基础网络,再增加额外的特征提取层,附加网络的结构和参数如下所示:第一个卷积层(conv6_1)有256个卷积核,核大小为1×1,步长为1,不填充像素;第二个卷积层(conv6_2)有512个卷积核,核大小为3×3,步长为2,填充一个像素;第三个卷积层(conv7_1)有128个卷积核,核大小为1×1,步长为1,不填充像素;第四个卷积层(conv7_2)有256个卷积核,核大小为3×3,步长为2,填充一个像素;第五个卷积层(conv8_1)有128个卷积核,核大小为1×1,步长为1,不填充像素;第六个卷积层(conv8_2)有256个卷积核,核大小为3×3,步长为1,不填充像素;第七个卷积层(conv9_1)有128个卷积核,核大小为1×

1,步长为1,不填充像素;第八个卷积层(conv9_2)有256个卷积核,核大小为3×3,步长为1,不填充像素;

网络同时对裂纹所在区域及置信度进行预测,总的损失函数由公式(1)表示:式中,类别损失函数由式(2)定义为:位置回归损失函数由式(3)定义为:R是鲁棒的损失函数smoothL1,由式(4)表示为:式中,Ncls和Nreg是为避免过拟合的正则项,λ为权重系数,i是该候选框的类别索引值,ti是该候选框的预测坐标偏移量,t*i是该候选框的实际坐标偏移量,pi是预测候选框属于第i类的概率,p*i表示其真实类别,p*i=0表示背景类,p*i=1表示裂纹类。

2.如权利要求1所述的基于SSD网络的裂纹舌识别方法,其特征在于:所述对裂纹区域进行预测的候选框生成方法中,默认盒生成规则如下:默认盒不需要与每一层的感受野对应,特征图中特定的位置负责图像中特定的区域,以及物体特定的尺寸,每个特征图中默认盒的尺寸大小计算如下,由式(5)表示:其中,Smin取值0.2,Smax取值0.95,则最底层的尺度是0.2,最高层的尺度是0.95,再用不同的长宽比进行扩充,用ar表示,ar={1,2,3,1/2,1/3},则每一个默认盒的长、宽分别由式(6),(7)表示为:

当长宽比为1时,额外增加一个默认盒,该默认盒的尺度为 因此,最终每个位置拥有6个默认盒;

每个默认盒的中心,为 其中,|fk|是第k个特征图的大小,且i,j∈[0,|fk|)。