1.一种车辆异常驾驶行为的检测方法,其特征在于,包括如下步骤:S1:从车辆GPS点中采集数据信息,根据采集到的数据信息计算相邻两位置点pi和pi+1之间的如下信息:距离di、时间间隔Δti、速度、加速度、方向directioni和转角Δθi;
S2:根据从步骤S1中所获得的信息,对车辆的超速、急加速、急减速、急刹车和频繁变道的驾驶行为进行特征提取;
S3:当检测目标表现出如步骤S2的驾驶行为时,采用结构相似度SSIM方法来度量GPS轨迹中任意两个位置点(pi,pj)驾驶行为特征之间的距离;
S4:根据从步骤S1中获得的信息,以及从步骤S3中得到的任意两个位置点间的距离,对步骤S2中各个驾驶行为进行聚类分析,并对聚类簇的结果进行标记;
S5:根据从步骤S4中得到的聚类分析结果,与待测GPS轨迹中的点进行对比检测,判断该点是否为超速、急加速、急减速、急刹车和频繁变道驾驶行为中的异常点,若是异常点,则根据异常点的信息对应得出车辆的异常驾驶行为;否则车辆为正常驾驶;
步骤S4包括如下步骤:
S401,采用基于多特征的凝聚层次聚类算法,根据时间距离timeDist、位置距离locDist、速度距离speedDist、加速度距离accDist、曲率距离curDist、转角距离angleDist、one‑hot特征距离Dist和融合距离SDist(pi,pj),对GPS原始数据集D={p1,p2,...,pn}建立点与点之间的距离矩阵Sn×n;利用拉普拉斯映射的方法,对距离矩阵Sn×n进行特征值的分解,得到特征值λ1,λ2,...,λn,再对特征值λ1,λ2,...,λn按降序排列,再计算相邻特征值之差,若第i个特征值λi和第i+1个特征值λi+1之间差异最大,则确定聚类个数k=argmax|λi+1‑λi|,再将距离矩阵Sn×n降为k维,得到低维距离矩阵X;
S402,再把矩阵X中的每个对象归为一类,得到k个类,每类包含一个对象;
S403,再对距离矩阵X进行更新,更新距离矩阵X时,将距离矩阵X中的值升序排列,选取最小距离的两个类合并为一个类;再重新计算更新之前的类和更新之后的类之间的距离;
S404,重复步骤S401进行循环聚类,直到最后合并成一个类或达到设定条件则结束循环聚类,最后输出k个聚类簇,及每个聚类簇的质心;
S405,根据S404,依据k个聚类簇,得到每个簇ci的成员个数|ci|,对所有簇按成员个数进行降序排序,并且设置参数 如果k个簇的所有成员个数大于给定参数 则根据簇边界b将簇标记为正常簇和异常簇。
2.根据权利要求1所述的一种车辆异常驾驶行为的检测方法,其特征在于,步骤S1中,每个位置点包含位置信息(xi,yi)和时间信息(ti),相邻两位置点(pi,pi+1)之间的各信息生成过程分别如下:
由位置点的经纬度值和时间,计算两位置点pi和pi+1之间的距离:di=dist(pi,pi+1)=R×arccos[sin(xi×π/180)×sin(xi+1×π/180)+cos(xi×π/180)×cos(xi+1×π/180)×cos((yi‑yi+1)×π/180)]其中,xi表示位置点pi的经度值,yi表示位置点pi的纬度值,R表示地球平均半径;
由位置点pi处的时间ti和pi+1处的时间ti+1来计算这两点之间的时间间隔Δti:Δti=ti+1‑ti;
由位置点pi和pi+1之间的距离di和时间间隔Δti计算位置点pi+1处的速度vi+1:vi+1=di/Δti;
由位置点pi和pi+1之间时间间隔Δti和位置点pi+1处的速度vi计算位置点pi+1处的加速度ai+1:
ai+1=(vi+1‑vi)/Δti;
根据GPS的数据点,得到位置点的方向directioni,方向directioni表示位置点在当前位置从正北方向顺时针旋转的角度;
两位置点pi和pi+1之间的转角Δθi指的是位置点pi和pi+1之间方向转动角度,根据两位置点pi和pi+1各自的方向信息θi和θi+1计算两位置点pi和pi+1之间的转角Δθi:Δθi=|θi+1‑θi|。
3.根据权利要求1所述的一种车辆异常驾驶行为的检测方法,其特征在于,步骤S2具体如下:
提取超速驾驶行为特征,其过程如下:
提取超速持续时间δ以及超速行为期间的行驶距离α,若δ等于超速持续时间的预设值时,若α大于等于超速行为期间的行驶距离的预设值,则判断车辆此时属于超速驾驶行为,否则不属于,以车辆此时是否属于超速驾驶行为的结果作为超速驾驶行为的特征;
提取急加速或急减速驾驶行为特征,其过程如下:提取位置点pi的速度vi、位置点pi+1的速度vi+1和位置点pi和pi+1之间的时间间隔Δti,若时间间隔Δti大于时间间隔预设值时,此时车辆既不属于急加速驾驶行为,也不属于急减速驾驶行为,则不判断是否为急加速或急减速驾驶行为;若时间间隔Δti小于等于时间间隔预设值时,再根据两点速度的大小,判断车辆是处于急加速还是急减速,若vi+1>vi,则判断此时车辆属于急加速驾驶行为,否则不属于;以车辆此时是否属于急加速驾驶行为的结果作为急加速驾驶行为的特征,以车辆此时是否属于急减速驾驶行为的结果作为急减速驾驶行为的特征;
提取急刹车驾驶行为特征,其过程如下:
先确定行驶方向的速度是否骤减为零,若位置点pi的速度vi>0,且位置点pi+1的速度vi+1=0,则确定行驶方向的速度骤减为零,否则不是;
再确定位置点pi+1的加速度值ai是否小于零;
再确定刹车行驶距离di;
若速度骤减为零、加速度值ai小于零且刹车行驶距离di小于预设刹车行驶距离预设值时,判断此时车辆属于急刹车驾驶行为,否则不属于,以车辆此时是否属于急刹车驾驶行为的结果作为急刹车驾驶行为的特征;
提取频繁变道驾驶行为特征,其过程如下:计算位置点pi和pi+1之间行驶路线的曲率si,其中,曲率si为位置点pi与pi+1之间的移动距离与直线距离之比;以曲率si作为频繁变道驾驶行为的特征。
4.根据权利要求3所述的一种车辆异常驾驶行为的检测方法,其特征在于,在提取急加速或急减速驾驶行为特征时:若时间间隔Δti小于等于时间间隔预设值时,再判断车辆为急加速还是急减速驾驶行为,并计算点pi+1的加速度值ai+1,再通过加速度值ai+1判定车辆急加速或急减速的等级。
5.根据权利要求1所述的一种车辆异常驾驶行为的检测方法,其特征在于,步骤S3包括如下步骤:
S301,计算GPS轨迹中任意两个位置点(pi,pj)驾驶行为特征之间的距离,GPS轨迹中任意两个位置点(pi,pj)驾驶行为特征之间的距离包括时间距离timeDist、位置距离locDist、速度距离speedDist、加速度距离accDist、曲率距离curDist、转角距离angleDist以及one‑hot特征距离Dist;
S302,对GPS轨迹中任意两个位置点(pi,pj)驾驶行为特征之间的距离进行融合分析,得到融合距离SDist(pi,pj),则融合距离SDist(pi,pj)如下式:SDist(pi,pj)=Wt×timeDist+Wv×speedDist+Wd×locDist+Wa×accDist+Ws×curDist+Wθ×angleDist+Wo×Dist式中,Wt表示两位置点时间距离的权重,timeDist表示时间距离;Wv表示两位置点速度距离的权重,speedDist表示速度距离;Wd表示两位置点位置距离的权重,locDist表示位置距离;Wa表示两位置点加速度距离的权重,accDist表示加速度距离;Ws表示两位置点曲率距离的权重,curDist表示曲率距离;Wθ表示两位置点转角距离的权重,angleDist表示转角距离;Wo表示one‑hot特征距离的权重,Dist表示one‑hot特征距离;
S303,再分别对时间距离timeDist、位置距离locDist、速度距离speedDist、加速度距离accDist、曲率距离curDist、转角距离angleDist、one‑hot特征距离Dist和融合距离SDist(pi,pj)进行归一化;
S304,根据步骤S303归一化的结果采用结构相似度SSIM方法来度量GPS轨迹中任意两个位置点(pi,pj)驾驶行为特征之间的距离,结构相似度SSIM(pi,pj)如下式:SSIM(pi,pj)=1‑Normalized(SDist(pi,pj))。
6.根据权利要求5所述的一种车辆异常驾驶行为的检测方法,其特征在于,时间距离timeDist采用余弦相似度度量方式,具体为:采用x1=(x11,x12,...,x1n)和x2=(x21,x22,...,x2n)分别表示两个位置点(pi,pj)的时间特征组成的时间向量,则时间距离timeDist的表达式为:
式中x1和x2是1×n维的时间向量,k表示向量中的第k个分量;
位置距离locDist采用欧氏距离进行计算,具体的,位置距离locDist的表达式为:式中(Zi,Yi)表示位置点pi处的经纬度值,i=1,2;
速度距离speedDist、加速度距离accDist、曲率距离curDist、转角距离angleDist以及one‑hot特征距离Dist均分别采用下式进行计算:式中,X1=(X11,X12,...,X1n),X2=(X21,X22,...,X2n),X1和X2分别表示两个位置点(pi,pj)的各one‑hot特征所组成的向量。
7.根据权利要求1所述的一种车辆异常驾驶行为的检测方法,其特征在于,步骤S5的具体过程如下:
待测车辆的GPS轨迹数据t为t={p1,p2,...,pm},m指该轨迹长度,计算轨迹中每个点pi与所有聚类簇的质心ci之间的距离dist(pi,ci),并得到与点pi距离最小的聚类簇dist(pi,cmin),cmin表示该聚类簇的质心,Rc表示聚类簇的半径,若dist(pi,cmin)≥Rc,则将该位置点标记为未知属性点pi′,重新计算与未知属性点pi′距离最小的聚类簇的半径Rc';否则找出聚类簇cmin所属簇的标记,若聚类簇标记为正常,则点pi为正常点;若聚类簇标记为异常,则点pi为异常点,再根据pi点的信息对应得出车辆的异常驾驶行为。