欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2018107943921
申请人: 重庆邮电大学
专利类型:发明专利
专利状态:已下证
专利领域: 计算;推算;计数
更新日期:2024-02-23
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种基于FMCW雷达的三参数特征融合手势识别方法,其特征在于,包括以下步骤:

1)设计手掌前推、后拉、左摆、右摆、前后推拉和左右摆动六个手势动作,并采集不同手势动作的FMCW雷达信号数据,将每一种手势动作的数据记为不同类别;

2)将发送信号sT(t)和回波信号sR(t)输入到混频器中,得到混频信号sM(t),混频信号sM(t)经过低通滤波器得到中频信号sIF(t);

3)根据中频信号sIF(t)求解得到雷达目标的距离参数R、角度参数θ和多普勒频移参数;

4)将计算得到的距离、角度和多普勒频移进行多帧累积,构造距离-时间图(Range-Time-Map,RTM)、多普勒-时间图(Doppler-Time-Map,DTM)和角度-时间图(Angle-Time-Map,ATM)并归一化处理;

5)将步骤四得到的RTM、DTM和ATM同步手势类别标签,构建三维参数数据集;

6)将数据集中描述手势动作的RTM、DTM和ATM数据分别送入卷积神经网络模型,进行单个参数的特征提取;

7)将步骤六得到的三个特征函数FRTM、FDTM、FATM输入全连接层进行特征融合;

8)将融合过后的特征向量Ffusion输入softmax分类器,其输出为不同手势类别;

9)将测试手势数据集输入到卷积神经网络中分类,得到手势分类结果y′。

2.基于权利要求1中所述的一种基于FMCW雷达的三参数特征融合手势识别方法,其特征在于:所述步骤7)中特征融合的方法,具体包括:

7a)将对应RTM、ATM和DTM的三个单参数网络使用全连接层并行处理,融合成为一个端到端的网络,这一部分的输入为RTM、DTM和ATM的fc6层特征函数FRTM、FDTM、FATM;

7b)将特征函数以矩阵的形式并行处理,以如下方式融合,得到融合过后的特征函数Ffusion:其中,(a1,a2,…,am),(b1,b2,…,bm),(c1,c2,…,cm)分别代表FRTM,FDTM,FATM中对应的特征向量。