欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2018107991215
申请人: 长沙学院
专利类型:发明专利
专利状态:已下证
更新日期:2024-01-05
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种预测疾病与LncRNA关联关系的方法,其特征在于,包括以下步骤:S1:从已知数据库获取LncRNA-miRNA关联关系和miRNA-疾病关联关系,根据二者构建LncRNA-miRNA-疾病相互作用网络;

S2:基于所述LncRNA-miRNA-疾病相互作用网络,构建疾病超级表达谱和LncRNA的超级表达谱;

S3:根据所述疾病超级表达谱和LncRNA的超级表达谱,采用基于RBF神经网络的LncRNA相似性计算和疾病相似性计算,训练疾病与LncRNA关联关系的预测模型;

S6:使用预测模型对候选样本的LncRNA-疾病关联对进行预测。

2.根据权利要求1所述的预测疾病与LncRNA关联关系的方法,其特征在于,所述步骤S3完成后,步骤S6进行之前,所述方法还包括:S4:使用已知的LncRNA-疾病关联对作为验证集对预测模型进行验证;

S5:根据验证的结果调整预测模型的参数,优化所述预测模型。

3.根据权利要求1或2所述的预测疾病与LncRNA关联关系的方法,其特征在于,所述步骤S1,包括以下步骤:S11:从已知数据库获取LncRNA-miRNA关联关系数据集,获取LncRNA-miRNA相互作用对;

S12:从已知数据库获取miRNA-疾病关联关系数据集,获取miRNA-疾病相互作用对;

S13:根据LncRNA-miRNA相互作用对构造LncRNA-miRNA关联关系的网络;

S14:根据miRNA-疾病相互作用对构造miRNA-疾病关联关系的网络;

S15:基于上述构建的LncRNA-miRNA关联关系的网络和miRNA-疾病关联关系的网络,构建LncRNA-miRNA-疾病相互作用网络。

4.根据权利要求3所述的预测疾病与LncRNA关联关系的方法,其特征在于,所述步骤S2,包括以下步骤:S21:根据LncRNA-miRNA关联关系的网络和miRNA-疾病关联关系的网络,构造LncRNA-miRNA邻接矩阵与miRNA-疾病邻接矩阵;

S22:基于LncRNA-miRNA-疾病相互作用网络,建立疾病的超级表达谱矩阵和LncRNA的超级表达谱矩阵。

5.根据权利要求4所述的预测疾病与LncRNA关联关系的方法,其特征在于,所述步骤S3,包括以下步骤:S31:根据LncRNA的超级表达谱矩阵,采用基于RBF神经网络算法计算LncRNA相似性;

S32:根据疾病的超级表达谱矩阵,采用基于RBF神经网络算法计算疾病相似性;

S33:基于LncRNA相似性、疾病相似性以及LncRNA-miRNA邻接矩阵与miRNA-疾病邻接矩阵来计算LncRNA-疾病关联对的关联程度,得到疾病与LncRNA关联关系的预测模型。

6.根据权利要求5所述的预测疾病与LncRNA关联关系的方法,其特征在于,所述步骤S4,包括以下步骤:S41:将每个已知的LncRNA-疾病关联对依次作为验证集,所有其他已知的LncRNA-疾病关联对作为训练样本;将所有没有确定的实验支持的LncRNA-疾病关联对组成候选样本,使用预测模型测得每个验证集相对于候选样本的排名,如果预测模型对验证集预测的排名高于事先给定的阈值,则判定为一个成功的预测。

7.根据权利要求6所述的预测疾病与LncRNA关联关系的方法,其特征在于,所述步骤S5,包括以下步骤:S51:通过调整阈值,绘制TPR和FPR的不同阈值的ROC曲线,计算ROC曲线的AUC;其中,TPR是预测验证样本的排名高于给定阈值的百分比,而FPR是排名低于给定阈值的验证样本的百分比;

S52:通过调整步骤S3中的计算的参数,根据预测模型获得的AUC值的大小,优化所述预测模型。

8.一种预测疾病与LncRNA关联关系的系统,其特征在于,包括:网络构建单元,用于从已知数据库获取LncRNA-miRNA关联关系和miRNA-疾病关联关系,根据二者构建LncRNA-miRNA-疾病相互作用网络;

表达谱构建单元,用于基于所述LncRNA-miRNA-疾病相互作用网络,构建疾病超级表达谱和LncRNA的超级表达谱;

模型构建单元,用于根据所述疾病超级表达谱和LncRNA的超级表达谱,采用基于RBF神经网络的LncRNA相似性计算和疾病相似性计算,训练疾病与LncRNA关联关系的预测模型;

预测单元,用于使用预测模型对候选样本的LncRNA-疾病关联对进行预测。

9.一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述权利要求1至7任一所述方法的步骤。