欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2018108224155
申请人: 浙江工业大学
专利类型:发明专利
专利状态:已下证
专利领域: 供热;炉灶;通风
更新日期:2023-12-11
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种利用非接触式测量模块的自动追踪加热系统,其特征在于:包括定位装置、温度测量装置、协调控制系统和加热装置,所述定位装置用于对人体进行定位,并将定位信息发送给协调控制系统;所述温度测量装置测量人体周围环境温度,将温度信息传给协调控制系统;所述协调控制系统接收到人的位置信息与温度信息,协调控制系统根据人的位置信息控制需要工作的一个或者几个加热装置运动到指定位置;温度测量装置实时测量人周围环境温度,将温度信息发送给协调控制系统,协调控制系统根据当前温度调整加热装置的工作功率;

定位装置是通过无线接入点组成的无线局域网络,定位装置以无线接入点的位置信息为基础和前提,采用经验测试和信号传播模型相结合的方式,对已接入的移动设备进行位置定位;用户手持终端进入定位装置覆盖的范围后,通过无线局域网络获得周围各个手持终端的用户发送的信号强度RSSI及AP地址,通过RSSI进行定位;

所述温度测量装置采用红外辐射测温法的非接触测量法对目标环境温度进行测量,将红外温度传感器装在既能在水平面上旋转又能在铅垂面上旋转的全方位的云台上,使用电机控制云台转动并在能旋转的两个方向上装上编码器,水平面上的编码器能够获得红外传感器在水平面上的方向与正北的夹角,铅垂面上的编码器能够获得红外传感器的方向与铅垂线之间的夹角,当需要调整红外传感器方向使其正对某个位置时,需要调整红外传感器的方向与铅垂线之间的夹角和在水平面上的方向与正北的夹角,即控制电机使水平面和铅垂面上的两个编码器的输出达到一定值;

所述加热装置为红外灯或热风口,加热装置运动方式为转动,根据需要,将n个加热装置布置一定高度处,将每个加热装置都装在既能在水平面上旋转又能在铅垂面上旋转的全方位的云台上,使用电机控制云台转动并在能旋转的两个方向上装上编码器,水平面上的编码器可以知道加热装置在水平面上的方向与正北的夹角,铅垂面上的编码器可以知道加热装置的方向与铅垂线之间的夹角,当需要调整加热装置方向使其正对某个位置时,需要调整加热装置的方向与铅垂线之间的夹角和在水平面中的方向与正北方向的夹角,即控制云台使水平面和铅垂面上的两个编码器的输出达到一定值;当需要对某个位置进行加热时,调整加热装置的方向使其正对该位置后加热;当供热的空间较大时,根据需要,将整个平面分成若干个子区域,每个子区域中布置一个加热装置。

2.根据权利要求1所述的利用非接触式测量模块的自动追踪加热系统,其特征在于:将整个区域分隔若干个子区域,多个加热装置负责加热一个子区域,当子区域内人数多于加热装置时,系统控制系统按照人均所获热量相等,总能量最大的原则计算加热装置的位置;

当子区域内人数少于或等于加热装置时,每人配置一个或多个加热装置,加热装置随着人员的位置移动而移动。

3.一种利用非接触式测量模块的自动追踪加热方法,其特征在于:包括如下步骤:定位装置实时对目标进行定位,将位置信息发送给协调控制系统;协调控制系统根据目标的位置信息控制需要工作的一个或者几个加热装置运动到指定位置;温度测量装置实时测量目标周围环境温度,将温度信息发送给协调控制系统;协调控制系统根据当前温度调整加热装置的工作功率;

定位装置是通过无线接入点组成的无线局域网络,定位装置以无线接入点的位置信息为基础和前提,采用经验测试和信号传播模型相结合的方式,对已接入的移动设备进行位置定位;用户手持终端进入定位装置覆盖的范围后,通过无线局域网络获得周围各个手持终端的用户发送的信号强度RSSI及AP地址,通过RSSI进行定位;

所述温度测量装置采用红外辐射测温法的非接触测量法对目标环境温度进行测量,将红外温度传感器装在既能在水平面上旋转又能在铅垂面上旋转的全方位的云台上,使用电机控制云台转动并在能旋转的两个方向上装上编码器,水平面上的编码器能够获得红外传感器在水平面上的方向与正北的夹角,铅垂面上的编码器能够获得红外传感器的方向与铅垂线之间的夹角,当需要调整红外传感器方向使其正对某个位置时,需要调整红外传感器的方向与铅垂线之间的夹角和在水平面上的方向与正北的夹角,即控制电机使水平面和铅垂面上的两个编码器的输出达到一定值;

所述加热装置为红外灯或热风口,加热装置运动方式为转动,根据需要,将n个加热装置布置一定高度处,将每个加热装置都装在既能在水平面上旋转又能在铅垂面上旋转的全方位的云台上,使用电机控制云台转动并在能旋转的两个方向上装上编码器,水平面上的编码器可以知道加热装置在水平面上的方向与正北的夹角,铅垂面上的编码器可以知道加热装置的方向与铅垂线之间的夹角,当需要调整加热装置方向使其正对某个位置时,需要调整加热装置的方向与铅垂线之间的夹角和在水平面中的方向与正北方向的夹角,即控制云台使水平面和铅垂面上的两个编码器的输出达到一定值;当需要对某个位置进行加热时,调整加热装置的方向使其正对该位置后加热;当供热的空间较大时,根据需要,将整个平面分成若干个子区域,每个子区域中布置一个加热装置;

当加热装置为红外灯时,某点接收到的红外灯辐射照度值q与该点到红外灯轴线距离r和加热电流I有关,某点处接收到的红外灯辐射照度值:q=f(r,I);

当加热装置为热风口时,某点接收到的单位面积加热功率P与该点到热风口的距离l,出风速度v和出风温度t有关。某点处接收的单位面积加热功率:p=f(l,v,t);

协调控制系统的作用是接收位置信息和温度信息,制定控制策略控制相应的加热装置给目标供热;当一个或多个目标处于加热区域中时,需要使各个目标处的辐射照度值或单位面积加热功率达到一定值;当有区域中有m个目标时,为了达到供热要求,协调控制系统制定控制策略,并将控制策略传给需要工作的加热装置;控制策略包括控制哪几个加热装置工作和加热装置以多大的功率进行加热;

具体的控制策略如下:

在存在多个供热源时,具体供热源的供热数量及每个供热源的供热热量的采用分布式估计算法进行求解:假设有n个供热源,编号为:1,L,n;每个供热源的功率为Oi,其中Oi>0:共有m个需要供热的位置,编号为:1,L,m,第j个受热源单位时间内需要提供的热量为Qj以维持或达到其需要的温度tj,供热源i对受热源j单位时间内可提供的热量为Pij;首先采用二进制编码ch={x1x2L xn};可行个体的适应度值为 不可行个体的适应度值为 值越小个体越好;概率模型为PM(k)=[α1(k),L,αn(k)],其中αi(k)表示在第k代供热源i打开的概率;初始化概率模型为PM(k)=[0.5,L,0.5],概率模型更新机制为

具体步骤如下:

Step1:初始化参数(如:种群规模N,精英率pe,更新率θ,终止条件等);

Step2:初始化概率模型和种群;

Step3:计算种群中每个个体的适应度函数值,选出前 个个体组成精英种群Pe,根据精英种群Pe更新概率模型;

Step4:采样概率模型生成新种群;

Step5:如果终止条件不满足,转到Step2;

其中,xi是决策变量,0或1中0表示第i个供热源关闭,开1表示第i个供热源打开;

j=1,L,m和xi=0 or 1作为约束条件,其中 为目标函数,即最小化

总能耗、j=1,L,m表示各个加热源对受热源提供的热源要大于等于其需要量;和xi=0 or 

1表示决策变量的取值范围。

4.根据权利要求3所述的利用非接触式测量模块的自动追踪加热方法,其特征在于:所述定位装置的工作包括两个阶段,离线采样阶段和实时定位阶段,离线采样阶段的目标是构建一个关于信号强度与采样点位置间关系的数据库,也就是位置指纹的数据库或无线电地图;为了生成该数据库,需要在需要定位的区域划分网格,建立采样点,使用wLAN接收设备在所有的采样点逐个采样,记录每个采样点的位置、所获得的RSSI及AP地址信息,对采样数据进行处理后存储在数据库中;实时定位阶段中,用户手持终端在定位装置覆盖的区域内移动,无线局域网络实时接收当前RSSI及AP地址,将收集到的当前RSSI及AP地址的信息上传到数据库中进行匹配,得到估算位置,并将无线局域网络接收到的信号强弱跟数据库中的众多数据进行匹配,以此实现实时定位。

5.根据权利要求4所述的利用非接触式测量模块的自动追踪加热方法,其特征在于:,所述匹配算法包括NN算法、KNN算法和神经网络算法。