1.一种利用电气化铁路再生制动能量的供电构造,包括牵引变电所牵引母线TBa、牵引母线TBb、钢轨R、车站10kV配电母线RDB、三相交直变流器COa、三相交直变流器COb、DC/DC变换器DDC、储能器SD,其特征在于:三相交直变流器COa的直流侧DCLa与三相交直变流器COb的直流侧DCLb相连,构成背靠背结构,其直流侧公共端通过DC/DC变换器DDC接至储能器SD;
三相交直变流器COa的交流侧三相端子分别通过电缆CAx接至牵引母线TBa、通过电缆CAy接至牵引母线TBb、通过电缆CAz接至钢轨R;三相交直变流器COb的交流侧三相端子通过三相电缆分别接至车站10kV配电母线RDB的a相、b相和c相;协调控制器CC设有In1~In5五个输入端和Out1~Out3三个输出端,其中,输入端In1接至牵引母线TBa的电压互感器PTa的二次侧,输入端In2接至牵引馈线TFa的电流互感器CTa的二次侧,输入端In3接至牵引母线TBb的电压互感器CTb的二次侧,输入端In4接至牵引馈线TFb的电流互感器CTb的二次侧,输入端In5接至储能器SD荷电状态输出端,输出端Out1接至三相交直变流器COa的控制端,输出端Out2接至三相交直变流器COb的控制端,输出端Out3接至DC/DC变换器DDC的控制端。
2.根据权利要求1所述的一种利用电气化铁路再生制动能量的供电构造,所述的牵引馈线TFa有并列的n路时,电流互感器CTa也为n个,则输入端In2设置为n路,分别接至n个电流互感器CTa的二次侧;所述的牵引馈线TFb有并列的n路时,电流互感器CTb也为n个,则输入端In4设置为n路,分别接至n个电流互感器CTb的二次侧,n≥2。
3.根据权利要求1所述的一种利用电气化铁路再生制动能量的供电构造,其特征在于:
所述三相交直变流器COa的额定功率PE、三相交直变流器COb的额定功率PD、DC/DC变换器DDC的额定功率PS、储能器SD的额定功率PB,它们之间的关系满足:PE≥PD≥PS, PS=PB。
4.一种利用电气化铁路再生制动能量的供电构造的控制方法,其特征在于:协调控制器CC通过输入端In1和In2获取牵引母线TBa的实时功率,记为pa,通过输入端In3和In4获取牵引母线TBb的实时功率,记为pb,通过In5获取储能器SD的荷电状态标志SOC,记三相交直变流系统COa实时运行功率为pe、三相交直变流系统COb实时运行功率为pd和DC/DC变换器DDC实时运行功率为ps,根据pa、pb和SOC之值实时控制pe、pd、ps三者功率交换,实现电气化铁路再生制动能量转换、存储和利用,具体步骤为:
1)当pa+pb≥0,牵引变电所无再生制动能量,协调控制器CC控制储能器SD放电;即,控制三相交直变流器COa处于待机状态,控制DC/DC变换器DDC实施储能器SD放电,并控制三相交直变流器COb向车站10kV配电母线RDB输送功率,其功率要求满足:①pe=0;②当SOC>SOC_lower时,pd=PS,当SOC≤SOC_lower时,pd=0;③当SOC>SOC_lower时,ps=PS,当SOC≤SOC_lower时,ps=0,其中,SOC_lower为储能器SD放电的下限值,由储能器SD的工作状态确定;
2)当-PD≤pa+pb<0,牵引变电所有再生制动能量,协调控制器CC控制再生制动功率大的一侧牵引母线将再生制动能量转移至车站10kV配电母线RDB,并协调控制储能器SD放电;
即,控制三相交直变流系统COa运行于两相工作模式,当pa≥pb时,通过电缆CAy和电缆CAz向直流侧DCLa传递功率,当pa
3)当pa+pb<-PD,牵引变电所有再生制动能量,协调控制器CC控制再生制动功率大的一侧牵引母线将再生制动能量转移至车站10kV配电母线RDB,并协调控制储能器SD存储剩余的能量;即,控制三相交直变流器COa运行于两相工作模式,当pa≥pb时,通过电缆CAy和电缆CAz向直流侧DCLa传递功率,当pa
PS;其中,SOC_upper为储能器SD充电的上限值,由储能器SD的工作状态确定。