1.一种基于奇异值分解和自编码器的轴承故障特征提取方法,其特征在于:包括以下步骤:
S101:采用S变换获得轴承振动信号x(t)的时频信息矩阵S(τ,f);
所述时频信息矩阵S(τ,f)的计算式如公式(1)所示:S102:对S101中的时频信息矩阵S(τ,f)进行奇异值分解,得到奇异值;
所述奇异值的计算公式如式(2)所示:T
S(τ,f)=UΓV (2)其中,S(τ,f)大小为M×N,U和V的大小分别为M×M,N×N的正交矩阵;Γ的大小的M×N,其形式如下 Λr×r=diag(σ1,σ2,...σr),σi称为时频信息矩阵S(τ,f)的奇异值;
S103:使用自编码器对获得的奇异值进行特征提取,得到轴承振动的特征;使用自编码器对获得的奇异值进行特征提取,其具体步骤如下:S201:构造自编码器模型;
构造自编码器的具体步骤如下:S301:假设输入数据为y∈{σ1,σ2,...σr},则隐藏层、输出层神经元的激活情况为:g=f(Ey+b) (3)T
h=f(Eg+b′) (4)T
其中, E和E均为权重矩阵且两者互为转置,b为隐藏层偏置量,b′为输出层偏置量,h即为所提取的特征向量;
S302:目标函数为
S303:训练方式为:
其中,η为学习速率,取值为0.01;
S202:使用构造的自编码器模型进行特征提取,得到特征向量。