1.边云协同环境中基于任务多约束的智能调度方法,其特征在于:包括获取调度任务;
将所述调度任务输入至双层神经网络结构模型;
所述双层神经网络结构模型根据调度任务输出任务资源对。
2.根据权利要求1所述的边云协同环境中基于任务多约束的智能调度方法,其特征在于:所述方法还包括:获取所述双层神经网络结构模型中的任务集和调度解集合;
判断所述任务集中是否存在调度任务;
若存在则根据所述调度任务从调度解集合中调取任务资源对,若不存在则将所述调度任务输入至双层神经网络结构模型中。
3.根据权利要求1所述的边云协同环境中基于任务多约束的智能调度方法,其特征在于:所述双层神经网络结构模型的训练过程如下:对参数权重进行初始化;
根据所述初始化的参数权重和任务多约束参数对第一层神经网络进行修正;
根据权重向量修改函数获取修改后参数权重;
将所述修改后参数权重和任务多约束参数输入至修正后的第一层神经网络,获取修正后的第一层神经网络的输出结果;
根据修正后的第一层神经网络的输出结果对第二层神经网络修正;
获取激活函数;
所述修正后的第二层神经网络根据激活函数得到任务资源对。
4.根据权利要求3所述的边云协同环境中基于任务多约束的智能调度方法,其特征在于:所述任务多约束参数包括计算量、保密度、费用和时间。
5.根据权利要求3所述的边云协同环境中基于任务多约束的智能调度方法,其特征在于:所述权重向量修改函数包括:其中,wi为参数权重,ki为任务多约束参数,Rj为资源多约束参数。
6.根据权利要求3所述的边云协同环境中基于任务多约束的智能调度方法,其特征在于:所述激活函数为:其中,ki为任务多约束参数,Rj为资源多约束参数。
7.根据权利要求6所述的边云协同环境中基于任务多约束的智能调度方法,其特征在于:所述资源多约束参数包括计算能力、可提供的保密层级、存储能力、相关费用和带宽。
8.边云协同环境中基于任务多约束的智能调度方法系统,其特征在于,所述系统包括:获取模块:用于获取调度任务;
输入模块:用于将所述调度任务输入至双层神经网络结构模型;
输出模块:用于所述双层神经网络结构模型根据调度任务输出任务资源对。
9.边云协同环境中基于任务多约束的智能调度方法系统,其特征在于,所述系统包括处理器和存储介质;
所述存储介质用于存储指令;
所述处理器用于根据所述指令进行操作以执行根据权利要求1-7任一项所述方法的步骤。
10.计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1-7任一项所述方法的步骤。