1.一种基于多相机视觉slam的室内AGV小车定位方法,其特征在于,包括以下步骤:
建立多相机模型,将场景点投影到多相机系统坐标系,多相机系统上的各相机以任意方向配置在该坐标系中;
利用多相机slam算法进行定位和地图建立,利用地图对自身位姿进行估计,在算法中使用多关键帧融合不同相机的图片;
在小车行径中容易特征点丢失的位置布置人工信标,通过人工信标获得机器人位姿,并将获得的位姿和多相机slam获得的位姿通过卡尔曼滤波融合,获得AGV小车最终的位姿。
2.根据权利要求1所述的一种基于多相机视觉slam的室内AGV小车定位方法,其特征在于,所述多关键帧为一个关键帧上包含了多个相机同时获取的图像的关键帧。
3.根据权利要求1所述的一种基于多相机视觉slam的室内AGV小车定位方法,其特征在于,多相机slam算法包括:位姿跟踪线程,对多个相机的图像进行ORB特征提取,进行初始姿态估或重定位,同时跟踪局部地图,最后判断插入新的多关键帧;
局部地图构建线程,利用插入的多关键帧,剔除最近地图点,然后从多相机中三角化生成地图点并进行多相机的局部BA优化,最后进行多关键帧剔除;
闭环检测线程,进行闭环矫正和全局BA优化。
4.根据权利要求3所述的一种基于多相机视觉slam的室内AGV小车定位方法,其特征在于,当新的相机图片采集后,位姿跟踪线程立即从图片中提取ORB特征点,用于随后在多关键帧中识别和匹配特征点,然后,使用最近两帧的相对位姿来预测AGV小车的当前位姿,局部地图点投影到多相机系统中,与从当前帧提取的特征点匹配,在经过基于多相机模型的初始位姿优化后,假定的位姿中仍保留足够的匹配,跟踪线程就开始在局部地图中搜索更多匹配,以及决定是否插入新的多关键帧并把新的多关键帧传输到局部地图构建线程;如果初始位姿估计失败,则使用EPnP和RANSAC算法执行多关键帧的重定位。
5.根据权利要求3所述的一种基于多相机视觉slam的室内AGV小车定位方法,其特征在于,每次位姿跟踪线程将一个新的多关键帧传到局部地图构建线程,一些最近创建但不满足特定条件的地图点就从地图中删除;然后,最新插入的相邻多关键帧间三角化生成新的地图点,其中相邻多关键帧由共视图决定;最后,执行局部BA优化以调整局部地图中的多关键帧位姿以及地图点,并判断多关键帧是否冗余并从地图中删除。
6.根据权利要求1所述的一种基于多相机视觉slam的室内AGV小车定位方法,其特征在于,利用多相机slam方法进行定位,记录下容易定位失败的位置,为特征点容易丢失的位置,在这些位置布置人工信标。
7.根据权利要求1所述的一种基于多相机视觉slam的室内AGV小车定位方法,其特征在于,利用多相机slam算法获得机器人的位姿,如果AGV小车工作时未观察到人工信标,则直接将多相机slam算法输出的位姿作为定位结果;当相机观察到人工信标时,利用人工信标估计机器人位姿,将多相机slam算法输出的位姿和人工信标估计的位姿使用卡尔曼滤波融合,将融合后的位姿作为AGV小车的最终位姿。