1.一种基于互联网信息的推荐系统,所述系统包括以下模块:第一加权模块,对每个检索结果页面所属图片元素集合进行匹配,并基于匹配结果给出第一检索加权;
第二加权模块,对每个检索结果页面所属标题元素集合进行匹配,并基于匹配结果给出第二检索加权;
加权重构模块,用于基于第一检索加权和第二检索加权,以及用户加权配置,生成重构加权,并向中心归置模块传递;
第一上下文模块,用于对每个检索结果页面中关键词的匹配处进行第一上下文分析,得到第一上下文系数,并向中心归置模块传递;
第二上下文模块,用于对每个检索结果页面中关键词的匹配处进行第二上下文分析,得到第二上下文系数,并向中心归置模块传递;
中心归置模块,基于第一上下文系数、第二上下文系数及重构加权,得出召回系数,并向召回判决模块传递;
召回判决模块,基于所述召回系数实施召回判决,将通过判决的召回结果发送至基础推荐模块;
基础推荐模块,生成基础推荐结果页面,并传递至推荐加扰模块;
推荐加扰模块,对推荐进行加扰,基于加扰模型对推荐结果页面进行加扰,并生成加扰后推荐页面;
次生推荐模块,接收加扰后推荐页面,基于特定的UI执行展现,使用户感知自适应页面推荐结果;
所述对每个检索结果页面所属图片元素集合进行匹配,并基于匹配结果给出第一检索加权具体为:获取所述每个检索结果页面所属每个图片元素的HTML元素代码,在所述每个图片元素的HTML元素代码中执行关键词查找,基于查找匹配结果,计算第一检索加权;
所述基于查找匹配结果,计算第一检索加权具体为:
第一检索加权N1=0.1*N*50%*100%;
其中,N为匹配结果中所匹配的图片数量参考值,当执行在所述每个图片元素的HTML元素代码中执行关键词查找得到M张匹配图片后,N与M的取值具有如下关系:当M<=10时,N=M;
当M>10时,N=10;
所述第二加权模块,对每个检索结果页面所属标题元素集合进行匹配,并基于匹配结果给出第二检索加权,具体为:在特定HTML代码标记的第一级和第二级中执行关键词查找;
除去特定HTML代码标记后,获取所述每个检索结果页面所属每段文字元素的HTML代码,将最大字号编码和次大字号编码确定为候选标题元素;若同时有多段文字元素的HTML代码属于同一字号大小,则将其内容进行首尾接续,合并为新的字符串,并统一标记为同一文字元素集合且其字号编码不变;
在候选标题元素中执行关键词查找,
基于查找匹配结果,计算第二检索加权;
所述基于查找匹配结果,计算第二检索加权,至少包括:第二检索加权N2=K1*30%*100%+K2*20%*100%;
其中,K1为候选标题元素中最大字号编码匹配结果数量与在特定HTML代码标记的第一级中执行关键词查找匹配结果数量加值的布尔判决值,当候选标题元素中最大字号编码匹配结果数量与在特定HTML代码标记的第一级中执行关键词查找匹配结果数量加值大于等于1时,K1=1,否则为0;K2为候选标题元素中次大字号编码匹配结果与在特定HTML代码标记的第二级中执行关键词查找匹配结果数量布尔判决值,当候选标题元素中次大字号编码匹配结果数量与在特定HTML代码标记的第二级中执行关键词查找匹配结果数量加值大于等于1时,K2=1,否则为0;
第一上下文模块对关键检索词匹配处前后特定长度的上下文进行分词截取,所述特定长度设定为分词后的关键检索词前后各X个词长度;
保存上述分词至第一上下文分词频率表,并更新上述分词在第一上下文分词频率表中出现的次数,所述第一上下文分词频率表至少记录第一上下文模块获得的上下文分词及其次数;
基于页面内各个分词在第一上下文分词频率表中出现的次数,设置第一上下文系数;
第二上下文模块,用于基于句号、换行符、制表符作为起止点,计算关键词前后的字符长度,并依据字符长度得到第二上下文系数;
所述依据字符长度计算得到第二上下文系数包括:
依据前后字符长度的总和,乘以一定的比例系数计算得到第二上下文系数;
若页面内有多处匹配,则将多处匹配分别计算的最大第二上下文系数作为该页面的第二上下文系数;对第二上下文系数作区间化取值。
2.一种互联网信息推荐方法,所述方法包括如下步骤:步骤一:使用第一加权模块对每个检索结果页面所属图片元素集合进行匹配,并基于匹配结果给出第一检索加权;
步骤二:使用第二加权模块对每个检索结果页面所属标题元素集合进行匹配,并基于匹配结果给出第二检索加权;
步骤三:使用加权重构模块,基于第一检索加权和第二检索加权,以及用户加权配置,生成重构加权,并向中心归置模块传递;
步骤四:使用第一上下文模块对每个检索结果页面中关键词的匹配处进行第一上下文分析,得到第一上下文系数,并向中心归置模块传递;
步骤五:使用第二上下文模块,对每个检索结果页面中关键词的匹配处进行第二上下文分析,得到第二上下文系数,并向中心归置模块传递;
步骤六:使用中心归置模块,基于第一上下文系数、第二上下文系数及重构加权,得出召回系数,并向召回判决模块传递;
步骤七:使用召回判决模块,基于所述召回系数实施召回判决,将通过判决的召回结果发送至基础推荐模块;
步骤八:基于基础推荐模块生成基础推荐结果页面,并传递至推荐加扰模块;
步骤九:使用推荐加扰模块对推荐进行加扰,基于加扰模型对推荐结果页面进行加扰,并生成加扰后推荐页面;
步骤十:使用次生推荐模块接收加扰后推荐页面,基于特定的UI执行展现,使用户感知自适应页面推荐结果;
所述对每个检索结果页面所属图片元素集合进行匹配,并基于匹配结果给出第一检索加权具体为:获取所述每个检索结果页面所属每个图片元素的HTML元素代码,在所述每个图片元素的HTML元素代码中执行关键词查找,基于查找匹配结果,计算第一检索加权;
所述基于查找匹配结果,计算第一检索加权具体为:
第一检索加权N1=0.1*N*50%*100%;
其中,N为匹配结果中所匹配的图片数量参考值,当执行在所述每个图片元素的HTML元素代码中执行关键词查找得到M张匹配图片后,N与M的取值具有如下关系:当M<=10时,N=M;
当M>10时,N=10;
所述第二加权模块,对每个检索结果页面所属标题元素集合进行匹配,并基于匹配结果给出第二检索加权,具体为:在特定HTML代码标记的第一级和第二级中执行关键词查找;
除去特定HTML代码标记后,获取所述每个检索结果页面所属每段文字元素的HTML代码,将最大字号编码和次大字号编码确定为候选标题元素;若同时有多段文字元素的HTML代码属于同一字号大小,则将其内容进行首尾接续,合并为新的字符串,并统一标记为同一文字元素集合且其字号编码不变;
在候选标题元素中执行关键词查找,
基于查找匹配结果,计算第二检索加权;
所述基于查找匹配结果,计算第二检索加权,至少包括:第二检索加权N2=K1*30%*100%+K2*20%*100%;
其中,K1为候选标题元素中最大字号编码匹配结果数量与在特定HTML代码标记的第一级中执行关键词查找匹配结果数量加值的布尔判决值,当候选标题元素中最大字号编码匹配结果数量与在特定HTML代码标记的第一级中执行关键词查找匹配结果数量加值大于等于1时,K1=1,否则为0;K2为候选标题元素中次大字号编码匹配结果与在特定HTML代码标记的第二级中执行关键词查找匹配结果数量布尔判决值,当候选标题元素中次大字号编码匹配结果数量与在特定HTML代码标记的第二级中执行关键词查找匹配结果数量加值大于等于1时,K2=1,否则为0;
第一上下文模块对关键检索词匹配处前后特定长度的上下文进行分词截取,所述特定长度设定为分词后的关键检索词前后各X个词长度;
保存上述分词至第一上下文分词频率表,并更新上述分词在第一上下文分词频率表中出现的次数,所述第一上下文分词频率表至少记录第一上下文模块获得的上下文分词及其次数;
基于页面内各个分词在第一上下文分词频率表中出现的次数,设置第一上下文系数;
第二上下文模块,用于基于句号、换行符、制表符作为起止点,计算关键词前后的字符长度,并依据字符长度得到第二上下文系数;
所述依据字符长度计算得到第二上下文系数包括:
依据前后字符长度的总和,乘以一定的比例系数计算得到第二上下文系数;
若页面内有多处匹配,则将多处匹配分别计算的最大第二上下文系数作为该页面的第二上下文系数;对第二上下文系数作区间化取值。