欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2020106738664
申请人: 杭州电子科技大学
专利类型:发明专利
专利状态:已下证
专利领域: 测量;测试
更新日期:2024-01-05
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种基于特征值搜索的轻量级直接跟踪方法,其特征在于,该方法具体包括以下步骤:

1)辐射源所在区域分块筛选:

对辐射源所在区域进行均匀分块并在每个分块内构造N个虚拟状态,计算各个虚拟状态的交叉模糊矩阵,对各个交叉模糊矩阵特征值分解后选取最大特征值组成特征值集合,在特征值集合中寻找最大特征值所对应的分块;

2)构造虚拟误差协方差集合:

将辐射源所在区域分块筛选后,使用所选区域边界构造虚拟误差协方差集合Ω,随着测量的更新,滤波进行算法收敛,滤波结果接近真实状态,辐射源状态的不确定性逐渐的减小;

3)构造虚拟状态集:

由协方差矩阵集合产生虚拟状态集,以确定和随机方式分别构造一定数量的虚拟状态;将两种虚拟状态组合在一起构成虚拟状态集;

4)构造特征值集合:

计算每个虚拟状态的交叉模糊矩阵 对交叉模糊矩阵特征值分解求取最大特征值,并将各矩阵最大特征值组成特征值集合;

其中,

M表示观测站数量,k表示观测时刻,对 特征值分解选取最大特征值并组成特征值集合λ, 表示虚拟状态,其中其中bm,k表示信号在第k个观测时刻到达第m个观测站的路径衰减系数,wm,k为零均值的复高斯白噪声,sk是目标发射的信号;nkT=[1,2,...,Nk],Ts为采样周期,Nk=[T/Ts]为每个时刻采样点数;

τm,k为信号在第k个观测时刻到达第m个观测站的时延;

fm,k为信号在第k个观测时刻到达第m个观测站与目标相对位移引起的多普勒频移:式中:

8

c=3×10m/s是信号传播速度;

||·||表示二范数;

T

ok=[xk,yk,zk] , 分别表示k时刻目标的位置向量和速度向量;um,k=T

[xm,k,ym,k,zm,k] , 分别表示第m个观测站在第k个观测时刻的位置向量和速度向量;

5)给出后验概率密度函数的近似表达式:寻找特征值集合中最大特征值所对应的虚拟状态,得到近似后验概率密度函数的显式表达;

6)、卡尔曼滤波更新:

增益更新: U为 的协方差, 为虚拟状态;

均值更新:

协方差阵更新:

其中 表示辐射源状态预测的协方差,xk|k‑1是预测状态;

7)、通过对2‑6的循环,实现对目标的实时跟踪。

2.根据权利要求1所述的一种基于特征值搜索的轻量级直接跟踪方法,其特征在于:步骤3)中确定和随机方式分别构造一定数量的虚拟状态,具体为:设Uj∈Ω是虚拟误差协方差集合中的一个元素,首先通过Uj确定虚拟状态,保证所有虚拟状态均匀分布在以xk|k‑1为中心以Uj为半径的椭球表面,也就是保证每个确定性状态都满足椭球方程;该椭球表示为式中,xk|k‑1是预测状态,表示虚拟状态,Uj是n×n的对角矩阵,n指是状态的维数,通过上式选取的确定性“虚拟”状态集有:式中[Uj]i表示第j个协方差矩阵的第i列;确定性集合 其中L为协方差矩阵个数,n为协方差矩阵维度;

与此同时在每个协方差矩阵组成的椭球空间里以高斯分布构建一定数量的虚拟状态组成集合,记为 指的是第j个协方差阵内选取的随机“虚拟”状态点组成的集合;

把确定性选取的状态集 和随机性选取的状态集γk组成一个整体,即

3.根据权利要求1所述的一种基于特征值搜索的轻量级直接跟踪方法,其特征在于:寻找特征值集合中最大特征值,具体为:最大特征值λindx对应的虚拟状态 是服从均值为 协方差为U∈Ω的高斯分布,即似然函数p(yk|xk)也是服从高斯分布, 后验概率密度函数的指数形式表示为

其中η表示归一化系数,xk表示更新后的辐射源状态,xk|k‑1表示辐射源状态的预测,表示辐射源状态预测的协方差。