欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2020109424315
申请人: 浙江大学台州研究院
专利类型:发明专利
专利状态:已下证
专利领域: 测量;测试
更新日期:2023-08-24
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.一种SC切型石英晶片研磨的在线测频系统,其特征在于,在线测频功能包括自动搜索功能和跟踪测频功能;自动搜索功能实现对SC晶片当前频率的搜索,并且根据自动搜索的不同结果进行不同的处理,若指定圈数内未搜索到频率则系统提示搜索异常报警,若搜索到一个频率则进行单频率跟踪测频流程,若搜索到两个频率则进行双频率跟踪测频流程;同时当系统出现测频异常且频率未到达停机阈值时,调用自动搜索功能重新搜索频率;

跟踪测频功能包括双频率跟踪功能、单频率跟踪功能、测频参数初始化、扫频参数设置和两个功能之间的切换功能;

双频率跟踪功能对两个频率跟踪测频的单次扫频测到谐振波形情况进行分析,两个频率跟踪测频的扫频范围能保证覆盖两个谐振频率,扫频得到的两个谐振频率F1和F2之间的波形包括测不到波形、测到1个波形、测到2个及2个以上波形;F1和F2的扫频范围与搜索宽度有关,在一定的搜索宽度下,F1的扫频范围和F2的扫频范围会存在一定的重叠区域;重叠区域具体先判断F1和F2的扫频范围是否存在重叠区域,若存在重叠区域,则F1+24SSL>F2-

12SSH,需判断F1扫频范围内测到的频率是否为F2;若不存在重叠区域,则F2-12SSH>F1+

24SSL,F1内测到频率不是F2;

单频率跟踪功能的扫频范围应覆盖将当前频率视为高频频率对应的低频频率扫频范围,以及将当前频率视为低频频率对应的高频谐振频率扫频范围;当前频率作为单频率跟踪的依据和SC晶片双谐振频率中另一个频率的判断依据;在单次扫频测频过程中,必须先保证测到当前频率,若当前频率未测到,则不作另外两个扫频范围的频率判断,若测到当前频率再进行前向频率波形和后向频率波形的判断;

测频参数初始化和扫频参数设置,测频参数包括双频率跟踪测频流程中的相关测频参数和单频率跟踪测频流程中相关测频参数,扫频参数根据自动搜索的结果设置扫频参数,自动搜索若搜到两个谐振频率,则设置双频率跟踪流程的扫频参数,自动搜索若搜到一个频率,则设置单频率跟踪流程的扫频参数;

双频率跟踪的单次扫频双谐振频率波形匹配过程,先对低频扫频范围做全频段波形匹配,根据低频频率的谐振频率匹配结果,再进行相应第一方案、第二方案的选择;

单频率跟踪的单次扫频在当前频率、前向频率和后向频率三个频率对应的频率范围内扫频,因此分析三个频段的测频情况;系统认为当前频率为当前研磨过程测到的真实频率,必须保证测到符合条件的当前频率的情况下才进行前向频率段和后向频率段的波形匹配,否则直接结束本次测频;

两个功能之间的切换功能,单次扫频测频数据处理完成后,将其通过晶片区分算法,若系统当前为单频率跟踪测频流程则获取当前频率、前向频率和后向频率对应测到晶片数,若系统当前为双频率跟踪测频流程,则获取低频频率和高频频率对应测到的晶片数;据测到的晶片数频率切换判断。

2.根据权利要求1所述的SC切型石英晶片在线研磨测频系统,其特征在于,自动搜索功能具体包括数据初始化、扫频和测频参数设置、单次扫频双谐振频率波形匹配功能、单次扫频数据处理功能、全频段数据处理功能和频段切换功能;

数据初始化进行频率统计相关变量的初始化,需要初始化的变量包括:单次扫频过程中测频相关变量、全频段分段扫频双谐振频率测频相关变量、全频段分段扫频单谐振频率测频相关变量、自动搜索过程相关控制变量和扫频模块控制变量;

扫频和测频参数设置包括设置扫频参数和测频参数;

扫频参数包括扫频起始频率、扫频截止频率、扫频步进、扫频速度和扫频幅度;在自动搜索扫频过程中采用在指定的圈数内进行周期性扫频的方法,一个周期的扫频为从目标频率开始到起始频率结束进行分段扫频,每段的扫频采用指定时间内重复扫频,每段扫频的扫频范围与频率相关,扫频范围内必须包含高频谐振频率和低频谐振频率;

单次扫频谐振频率波形匹配功能,当单次采样完成后,进入自动搜索单次扫频双谐振频率波形匹配;自动搜索单次测频双谐振频率波形匹配功能与测频测试功能的单次扫频双谐振频率波形匹配功能基本相同,不同的地方在于:开始所有扫频点9点波形匹配算法前先判断当前段测到谐振频率次数是否小于设定阈值,若小于,则进行9点波形匹配,否则认为本段采集到的数据量已经足够,跳过本次9点波形匹配过程;

由于自动搜索过程中每段的扫频范围较大,不同频率对应的搜索宽度会有所差别,从而采用在9点波形匹配过程中采用多个搜索宽度进行匹配;

单次扫频数据处理功能包括处理以下三种情况,测到2个以上谐振频率、测到2个谐振频率和测到1个谐振频率3种情况;

测到2个以上谐振频率时,通过两个循环依次取出瞬时谐振频率存储数组中两个数据进行除法运算;若其商在频率比最大值和频率比最小值范围内,则取出这两个数据分别存入本段高频和低频对应的谐振频率存储数组,同时本段高频和低频测到的谐振频率次数进行加1,然后退出遍历循环,认为得到本次扫频的高频频率和低频频率,本次数据处理完成,否则继续遍历瞬时谐振频率存储数组;

若遍历存储数组中的所有频率都未得到符合条件的数据,则将本次扫频的峰峰值最大值对应的谐振频率存入本段谐振频率存储数组,同时本段测到的谐振频率次数加1;

本段谐振频率存储数组对自动搜索过程中出现只搜索到一个谐振频率、搜索到符合条件的两个谐振频率的数据进行分开存储,并在自动搜索结束后的数据处理过程中也分开处理;

测到2个谐振频率时,将测到的两个数据进行除法运行,若其商在频率比最大值和频率比最小值范围内,则将这两个数据分别存入本段高频和低频对应的谐振频率存储数组,同时本段高频和低频测到的谐振频率次数进行加1;若其商不在频率比最大值和频率比最小值范围内,则将本次扫频的峰峰值最大值对应的谐振频率存入本段谐振频率存储数组即可,同时本段测到的谐振频率次数加1;

测到1个谐振频率时,将本次扫频的峰峰值最大值对应的谐振频率存入本段谐振频率存储数组即可,同时本段测到的谐振频率次数加1;

频段切换功能,通过设置指定的时间进行单频段的重复扫频和测频,当指定的时间到达后,判断全频段扫频是否完成,全频段扫频完成的判断依据为当前扫频的起始频率是否小于用户设置的晶片研磨起始频率,若小于则全频段扫频完成,进行全频段数据处理功能;

若不小于,则进行频率切换;

全频段数据处理功能,若全频段扫频完成,进入全频段数据处理,具体包括如下步骤:

2.1.1)遍历自动搜索过程所有频段测到的高频和低频谐振频率;若当前段测到的高频和低频谐振频率次数大于等于系统设定的自动搜索成功谐振频率次数,则对高频和低频谐振频率存储数组内的所有数据进行干扰值剔除后,求出剩余数据的平均值,并返回剩余数据的个数;若剩余的数据个数还是大于等于系统设定的自动搜索成功谐振频率次数,则认为高频和低频谐振频率搜索成功,同时判断剩余的数据个数是否大于所有段最大谐振频率次数,若大于,则将所有段最大谐振频率次数设置为本段经数据处理后的剩余数据个数,再进行下一段的数据处理,否则直接进行下一段的数据处理,直到完成所有段的数据处理,找到符合条件的数据个数最大的段;

若当前段测到的高频和低频谐振频率次数小于系统设定的自动搜索成功谐振频率次数,则进行下一段的数据处理,直到完成所有段的数据处理;

2.1.2)判断高频和低频谐振频率是否搜索成功,若搜索成功,则判断高频谐振频率和低频谐振频率的比值是否在频率比最大值和频率比最小值范围内,若在范围内,则认为两个谐振频率都搜索到,将跟踪测频过程使用的高频谐振频率和低频谐振频率分别设置为自动搜索测到的高频和低频谐振频率,进入跟踪测频流程;若搜索不成功,则进行全频段单谐振频率数据处理;

2.1.3)单谐振频率数据处理,遍历全频段测到的单谐振频率数据,若当前段测到单谐振频率次数大于等于系统设定的自动搜索成功谐振频率次数,则对单谐振频率存储数组内的所有数据进行干扰值剔除后,求出剩余数据的平均值,并返回剩余数据的个数;若剩余的数据个数还是大于等于系统设定的自动搜索成功谐振频率次数,则认为单谐振频率搜索成功,同时判断剩余的数据个数是否大于所有段最大谐振频率次数,若大于,则将所有段最大谐振频率次数设置为本段经数据处理后的剩余数据个数,再进行下一段的数据处理,否则进行下一段的数据处理,直到完成所有段的数据处理;

若当前段测到单谐振频率次数小于系统设定的自动搜索成功谐振频率次数,则进行下一段的数据处理,直到完成所有段的数据处理;

2.1.4)判断单谐振频率是否搜索成功,若搜索成功,则将跟踪测频过程使用的高频谐振频率设置为自动搜索测到单谐振频率,进入跟踪测频流程;若搜索不成功,判断自动搜索圈数是否达到系统设置的自动搜索异常圈数,若达到,则停止自动搜索,系统进行自动搜索异常报警;若未达到,则继续进行全频段自动搜索流程;

2.1.5)根据自动搜索的结果,将谐振频率数据发送给界面显示;若双谐振频率搜索成功,则对高频和低频谐振频率进行校准后发送给界面显示,若单谐振频率搜索成功,则对单谐振频率进行校准后发送给界面显示。

3.根据权利要求2所述的SC切型石英晶片在线研磨测频系统,其特征在于,单次扫频过程中测频相关变量的初始化包括:谐振频率个数统计变量清零、谐振频率个数最大值设置、瞬时谐振频率存储数组清零和峰峰值最大瞬时谐振频率清零;

全频段分段扫频双谐振频率测频相关变量的初始化包括:全频段扫频当前段位置清零,全频段从0开始,最多分为36段,各个扫频频段高频和低频测到谐振频率次数存储数组清零,各个扫频频段高频和低频测到谐振频率存储数组清零;

全频段分段扫频单谐振频率测频相关变量的初始化包括:各个扫频频段测到单谐振频率次数存储数组清零、各个扫频频段测到单谐振频率存储数组清零;

自动搜索过程相关控制变量的初始化包括:自动搜索过程开始标志位设置、自动搜索测频结果标志位设置、自动搜索频率切换标志位设置、自动搜索频率切换计时时间清零,自动搜索过程圈数统计清零;

扫频模块控制变量的初始化包括:扫频模块边沿跳变标志位清零、扫频模块扫频上升沿和下降沿采样数据个数统计清零、扫频模块扫频上升沿和下降沿采样完成标志位清零、扫频模块扫频上升沿和下降沿采样处理标志位清零。

4.根据权利要求2所述的SC切型石英晶片在线研磨测频系统,其特征在于,频率切换流程进行如下操作:

①判断当前扫频段数是否大于系统设置的最大扫频频段数,若大于,则直接退出频率切换流程,进入全频段数据处理流程;若不大于,则当前扫频段数加1;

②使用上次扫频参数计算时得到的下一段扫频的高频谐振频率,通过上述的自动搜索扫频参数和测频参数设置方法得到新的扫频参数和测频参数;

③根据新得到的扫频参数设置扫频模块进行扫频;同时设置扫频模块控制变量:扫频模块边沿跳变标志位清零,扫频模块扫频上升沿和下降沿采样数据个数统计清零,扫频模块扫频上升沿和下降沿采样完成标志位清零,扫频模块扫频上升沿和下降沿采样处理标志位清零。

5.根据权利要求1所述的SC切型石英晶片在线研磨测频系统,其特征在于,单频率跟踪功能中的单次扫频的测频谐振波形分析和具体处理过程如下:

2.2.1)当前频率扫频范围内未匹配到谐振波形,则不管前向频率扫频范围和后向频率扫频范围是否存在谐振波形,都不进行波形匹配;

2.2.2)当前频率扫频范围内匹配到1个符合条件的谐振波形,则对前向频率扫频范围在±N*(1/1.095)处进行波形匹配,对后向频率扫频范围在±N*1.095进行波形匹配,根据匹配结果分别判断是否在频率比范围内,若在则分别存入相关数组;

2.2.3)当前频率扫频范围内匹配到2个及以上谐振波形,则分别对三个扫频范围进行整个频率范围内的测频,根据测频结果进行数据判断。

6.根据权利要求1所述的SC切型石英晶片在线研磨测频系统,其特征在于,测频参数初始化的具体设置步骤如下:

2.3.1)双频率跟踪测频中单次扫频测频时,低频频率和高频频率分别测到的谐振频率次数清零,瞬时谐振频率数组清零,峰峰值最大值谐振频率清零;单频率跟踪测频流程中单次扫频测频时,当前频率、前向频率和后向频率分别测到的谐振频率次数清零,瞬时谐振频率数组清零,峰峰值最大值谐振频率清零;

2.3.2)在晶片区分算法中使用的变量,双频率跟踪测频流程中的高频频率和低频频率对应的变量和单频率跟踪测频流程中的当前频率、前向频率和后向频率对应的变量分别初始化;连续未测到谐振频率次数、连续测到谐振频率次数和连续测到谐振频率后连续未测到谐振频率次数都清零,单片散差值清零,指定时间内统计的单片散差片数计数清零,指定时间内所有单片散差值存储数组清零,单片瞬时谐振频率值存储数组清零,一圈内单片瞬时谐振频率存储数组清零,单圈瞬时谐振频率次数统计变量清零,本圈测到的晶片总数清零,上一圈测到的晶片总数清零,谐振频率单片平均值数据个数变量清零,在线测频一圈单片谐振频率平均值存储数组清零,在线测频每圈定时分段晶片数存储数组清零,在线测频每圈定时分段上一圈每段晶片数存储数组清零;

2.3.3)将圈数和转速判断相关变量初始化,包括:计圈异常监控时间计时清零,连续圈转速稳定标志位清零,在线测频单圈定时区段划分当前值清零,谐振频率平均值存储堆栈初次存储标志位;

2.3.4)跟踪测频统计量变量初始化。由于跟踪测频的统计量主要用于整盘实时频率、研磨速率、研磨圈数等界面显示变量统计,而双频率跟踪流程中显示SC晶片的低频谐振频率和高频谐振频率相关统计量,而单谐振频率跟踪测频流程中显示SC晶片的低频谐振频率和高频谐振频率中其中一个的统计量,因此双频率跟踪测频流程和单频率跟踪测频流程可共用一组参数,为低频谐振频率和高频谐振频率相关统计量;

2.3.5)扫频模块控制变量初始化;

扫频参数的具体设置步骤如下:

2.4.1)双频率跟踪测频时,根据低频谐振频率设置波形峰值约束值;单频率跟踪测频时,根据当前谐振频率设置波形峰值约束值;

2.4.2)根据波形搜索宽度系数设置搜索宽度;其中双频率跟踪测频时,根据自动搜索得到的高频谐振频率和低频谐振频率设置对应的搜索宽度,搜索宽度获取的公式为频率的N阶多多项式;单频率跟踪测频时,根据自动搜索得到的当前谐振频率计算得到前向频率和后向频率,前向频率为当前频率除以频率比,后向频率为当前频率*频率比,再根据当前频率、前向频率和后向频率设置对应的搜索宽度,其中前向频率搜索宽度的计算使用低频搜索宽度系数,当前频率和后向频率搜索宽度的计算使用高频搜索宽度系数;

2.4.3)根据搜索宽度和当前频率获取相应的扫频范围;双频率跟踪测频时,高频频率的扫频范围为:(高频谐振频率-12SS)~(高频谐振频率+24SS);

低频频率的扫频范围为:(低频谐振频率-12SS)~(低频谐振频率+24SS)

单频率跟踪测频时,

当前频率的扫频范围为:(当前谐振频率-12SS)~(当前谐振频率+24SS);

前向频率的扫频范围为:(前向谐振频率-12SS)~(前向谐振频率+24SS);

后向频率的扫频范围为:(后向谐振频率-12SS)~(后向谐振频率+24SS)

其中SS为对应频率的搜索宽度;

2.4.4)根据谐振频率和扫频幅度系数获取扫频幅度,其中双频率跟踪测频中使用高频谐振频率计算,单频率跟踪测频中使用当前谐振频率计算;

2.4.5)根据低频频率的搜索宽度和前向频率的搜索宽度计算扫频步进;

2.4.6)根据各个频率对应的扫频范围设置当前扫频模块的扫频起始频率和扫频截止频率,计算各个频率段对应的扫频点数,各个频段对应总的扫频范围内的扫频起始位置;

2.4.7)根据上述得到的扫频参数设置扫频模块参数,开始扫频。

7.根据权利要求1所述的SC切型石英晶片在线研磨测频系统,其特征在于,低频扫频范围内全频段波形匹配的结果分别进行高频扫频范围内的波形处理,具体步骤如下:

2.5.1)通过9点波形匹配算法在低频扫频范围内进行全频段波形匹配,搜索宽度采用低频搜索宽度,若匹配到符合波形特征的波形,则判断该波形是否满足峰值约束条件,若满足峰值约束条件,则获取当前匹配成功的波形位置,对该段波形进行平滑处理后获取峰值最大处作为谐振频率值,判断该谐振频率是否在频宽约束范围内,则将该频率存入低频单次扫频瞬时谐振频率数组,同时判断该频率对应的峰峰值是否大于本次扫频低频频率范围内测到的频率的峰峰值,若大于则将低频频率范围内测到的最大峰峰值频率设置为本次测到的谐振频率,将低频扫频范围的波形匹配点向前推进6SSL继续进行波形匹配,直到匹配点推进到低频扫频采样总点数-9SSL;若不满足峰值约束条件或者不在频宽约束范围内,则将低频扫频范围的波形匹配点向前推进1点继续进行波形匹配,直到匹配点推进到低频扫频采样总点数-9SSL;

2.5.2)根据低频扫频范围内的测频结果进行高频扫频范围内的测频;

若低频扫频范围内未测到谐振频率,则采用相同的方法对高频扫频范围进行全频段波形匹配;若高频扫频范围内也未测到符合条件的谐振频率,则结束本次测频;若高频扫频范围内测到1个符合条件的谐振频率,则将该谐振频率设置为本次测频测到的高频谐振频率,同时将设置高频谐振频率搜索成功标志位;若高频扫频范围内测到2个或两个以上符合条件的谐振频率,则将其中峰峰值最大的谐振频率设置为本次测频测到的高频谐振频率,同时将设置高频谐振频率搜索成功标志位;

若低频扫频范围内测到1个谐振频率,则将该谐振频率设置为本次测频测到的低频谐振频率,通过低频谐振频率设置高频频率的波形匹配范围;高频频率=低频频率*频率比,再根据高频频率计算出高频频率在扫频范围内的位置;扫频模块上升沿时其满足其中FS为扫频的起始频率, 为前向频率在扫频范围内的位置,Ff为前向频率值;扫频模块下降沿时其满足 得到前向频率在扫频范围内的位

置后,根据系统设置参数,在其 范围内进行逐点波形匹配;在该频率范围内采用上述相同的方法进行波形匹配;若未匹配到波形,则结束本次测频;若匹配到一个符合条件的波形,则判断其谐振频率与低频谐振频率的比值是否在频率比范围内,若满足,则认为该高频扫频范围内匹配到的频率为高频谐振频率,同时将设置低频和高频谐振频率搜索成功标志位,本次测频结束,退出单次扫频双谐振频率匹配流程;若匹配到2个或者2个以上符合条件的波形,则将对应的谐振频率值分别与低频谐振频率值进行除法运算,判断其比值是否在频率比范围内,若在频率比范围内的谐振频率个数还是存在2个或者2个以上,则取其中峰峰值最大的频率作为高频谐振频率;

若低频扫频范围内测到2个或者2个以上谐振频率,则对高频扫频范围进行全频段波形匹配;若高频扫频范围内未测到谐振频率,则取低频扫频范围内测到的峰峰值最大的频率作为低频谐振频率,本次测频结束;若高频扫频范围内测到的谐振频率至少有1个,则通过两轮循环分别取出低频频率和高频频率做除法运算,判断其商是否在频率比范围内,若在认为这两个频率分别为低频谐振频率和高频谐振频率,结束循环,本次测频结束;

在低频扫频范围内和高频扫频范围内同时测到谐振频率,但是其比值不在频率比范围内时,系统认为低频扫频范围内测到的谐振频率是有效的,因为SC晶片需要的频率为低频频率。