1.一种命名实体识别方法,其特征在于,包括:
将待识别电子病历输入至命名实体识别模型;
输出与所述待识别电子病历对应的医疗实体识别结果;
其中,所述命名实体识别模型是基于电子病历样本数据以及预先确定的医疗实体标签进行训练后得到的,所述命名实体识别模型用于基于预设双向长短期记忆网络-条件随机场模型对所述待识别电子病历的基于拼音首字母、字和词的融合特征向量进行处理,以获得所述待识别电子病历对应的医疗实体识别结果。
2.根据权利要求1所述的命名实体识别方法,其特征在于,所述拼音首字母、字和词的融合特征向量是基于所述待识别电子病历的拼音首字母特征向量、字特征向量和词特征向量进行融合得到的;
所述预设双向长短期记忆网络-条件随机场模型包括依次连接的输入层、双向长短期记忆网络-卷积神经网络层、双向长短期记忆网络-注意力机制层和条件随机场层,所述双向长短期记忆网络-卷积神经网络层包括双向长短期记忆网络模型和卷积神经网络模型,所述双向长短期记忆网络-注意力机制层包括双向长短期记忆网络模型和注意力机制模型。
3.根据权利要求2所述的命名实体识别方法,其特征在于,所述基于预设双向长短期记忆网络-条件随机场模型对所述待识别电子病历的基于拼音首字母、字和词的融合特征向量进行处理,以获得所述待识别电子病历对应的医疗实体识别结果,具体包括:将所述融合特征向量输入双向长短期记忆网络-卷积神经网络层中的双向长短期记忆网络模型,获得第一向量;
将所述字特征向量输入双向长短期记忆网络-卷积神经网络层中的卷积神经网络模型,获得第二向量;
将所述第一向量和第二向量进行串联融合,获得第三向量;
将所述第三向量分别输入所述双向长短期记忆网络-注意力机制层中的双向长短期记忆网络模型和注意力机制模型中,获得双向长短期记忆网络模型输出的第四向量和注意力机制模型输出的第五向量;
将所述第四向量和第五向量进行串联融合,获得第六向量;
将所述第六向量输入条件随机场层,以获得所述待识别电子病历对应的医疗实体识别结果。
4.根据权利要求2所述的命名实体识别方法,其特征在于,所述拼音首字母、字和词的融合特征向量是基于所述待识别电子病历的拼音首字母特征向量、字特征向量和词特征向量进行融合得到的,具体包括:将所述拼音首字母特征向量与所述字特征向量进行求和融合,获得第七向量;
将所述第七向量与所述词特征向量进行串联融合,获得所述融合特征向量。
5.根据权利要求2所述的命名实体识别方法,其特征在于,所述待识别电子病历的字特征向量和词特征向量是基于词向量模型得到的。
6.根据权利要求2所述的命名实体识别方法,其特征在于,所述待识别电子病历的拼音首字母特征向量是基于所述待识别电子病历以及标注词典确定的;所述标注词典由经序列标注得到的医疗实体构成。
7.根据权利要求3所述的命名实体识别方法,其特征在于,所述第二向量是所述字特征向量经卷积和最大值池化操作得到的。
8.一种命名实体识别装置,其特征在于,包括:
输入模块,用于将待识别电子病历输入至命名实体识别模型;
输出模块,用于输出与所述待识别电子病历对应的医疗实体识别结果;
其中,所述命名实体识别模型是基于电子病历样本数据以及预先确定的医疗实体标签进行训练后得到的,所述命名实体识别模型用于基于预设双向长短期记忆网络-条件随机场模型对所述待识别电子病历的基于拼音首字母、字和词的融合特征向量进行处理,以获得所述待识别电子病历对应的医疗实体识别结果。
9.一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述命名实体识别方法的步骤。
10.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述命名实体识别方法的步骤。