1.一种海量财务数据异常控制提取工作方法,其特征在于,包括:S1,通过云端数据库获取财务数据,对财务数据中的异常数据进行登录,然后开始初步查询,查询过程中对无效数据进行实时查询校验提取;
S2,在实时查询校验提取后,设置异常数据的判断区间,在判断区间之中形成标准化数据。
2.根据权利要求1所述的海量财务数据异常控制提取工作方法,其特征在于,所述S1包括:
S1‑1,在云端数据库中调取财务数据,在财务数据中获取异常数据,异常数据提取过程通过初步查询过程进行数据均衡来动态请求云端数据库的财务数据,采用动态配置的方式,设置异常数据的获取阈值,根据不同财务数据的安全控制机制和权限管理要求提取不同的异常数据进行登录操作。
3.根据权利要求1所述的海量财务数据异常控制提取工作方法,其特征在于,所述S1包括:
S1‑2,在初步查询过程中,云端数据库对财务数据认证、功能访问权限信息存储在本地数据库中,进行统一财务数据认证、功能权限控制;对于财务数据对异常数据进行逻辑隔离,存放在独立数据库中;财务数据登录过程中验证用户身份并根据财务数据中异常数据访问权限信息构造该用户有权访问的异常数据集合,通过云端数据库的身份认证过程进行认证访问;如果访问失败,则返回异常数据访问失败信息;如果访问成功,则登录成功;建立用户与系统动态分配的应用服务器实例独立的通道。
4.根据权利要求1所述的海量财务数据异常控制提取工作方法,其特征在于,所述S1还包括:
S1‑3,异常数据的访问和使用过程为,在根据多个异常数据,形成异常数据关系节点,查找PaaS平台资源进行转换为树结点,生成异常数据树结点列表,将空的异常数据结点集作为当前结点集,对当前的异常数据树结点集进行遍历操作,从而判断当前遍历操作的结点集的异常数据父资源信息列表是否等于预置的异常数据根结点信息列表,若等于预置的异常数据根结点信息列表,则当前遍历操作的结点集为当前异常数据权限树的根结点,若不等于预置的异常数据根结点信息列表,继续遍历异常数据标识等于当前遍历操作的结点的父资源信息列表的资源,将该资源标记为当前遍历操作的结点的异常数据父结点。
5.根据权利要求1所述的海量财务数据异常控制提取工作方法,其特征在于,所述S1还包括:
S1‑4对于异常数据结点是否等于当前遍历到的结点的父资源信息列表,判断当前树结点列表是否遍历完毕;若遍历完毕检测异常数据父结点信息列表,若未遍历完毕,则将当前异常数据父结点信息列表作为当前树结点的根节点,标记递归构建异常数据业务查询树;
将异常数据某一节点上分配的多个异常数据查询请求,重新分配给异常数据某一计算节点并备份,以使得所述某一计算节点和所述备份计算节点中的每一个仅被分配一个子查询。
6.根据权利要求1所述的海量财务数据异常控制提取工作方法,其特征在于,所述S2还包括:
S2‑1,经过查询校验之后,对异常数据划分判断区间,计算异常数据相似度,从而生成判断区间,将异常数据通过比例缩放计算进行标准化处理,异常大量资金转入快速分散转出的交易数据ui的转换值为u′i,异常大量分散资金转入快速集中转出的交易数据vi的转换值为v′i,异常时间点交易数据xi的转换值为x′i、异常相同数额交易数据yi的转换值为y′i、异常超限额交易数据zi的转换值为z′k。
7.根据权利要求6所述的海量财务数据异常控制提取工作方法,其特征在于,所述S2还包括:
将转换后的交易异常数据与时间和日期变量一起代入判断模型,在统计的任一时间和日期内计算异常数据的判断值:
其中,B(t,d)为异常数据在任一时间t和日期d的判断值;f(u′i;t,d)为一个异常大量资金转入快速分散转出的交易数据的时间和日期的判断值;f(v′i;t,d)为一个异常大量分散资金转入快速集中转出的交易数据的时间和日期的判断值;f(x′i;t,d)为一个异常时间点交易数据的时间和日期的判断值;f(y′i;t,d)为一个异常相同数额交易数据的时间和日期的判断值;f(z′i;t,d)为一个异常超限额交易数据的判断值;i最大为60是为了保证一分钟内每一秒的异常数据都进行实时监控判断。
8.根据权利要求6所述的海量财务数据异常控制提取工作方法,其特征在于,所述S2还包括:
S2‑2,计算每一个异常数据在时间和日期上的实际和判断值的差值,通过残差平方和对离散的异常数据进行线性曲线拟合过程,从而对异常数据的风险趋势进行判断,其中,W为每个异常数据的残差平方和;B0(t,d)为每个异常数据在该时间和日期的实际值;B(t,d)为每个异常数据在该时间和日期的判断值;M为统计的时间最大的时刻或者日期的最多天数。
9.根据权利要求6所述的海量财务数据异常控制提取工作方法,其特征在于,所述S2还包括:
S2‑3,然后计算异常数据的偏离度其中,F为计算常数,通过调节系数λ进行调节,由于W增大,故取的计算常数F较大;通过增加异常数据准确获取值Hj,对全部N个异常数据准确获取值累加之后进行特征值e的偏离收敛,β为特征阈值。