欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2020114992332
申请人: 浙江工业大学
专利类型:发明专利
专利状态:已下证
专利领域: 控制;调节
更新日期:2023-12-11
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.基于复拉普拉斯矩阵的编队控制方法,具体步骤如下:步骤1,建立运动模型;

首先对机器人的活动空间建立全局坐标系;对于机器人的活动空间内,建立x‑y笛卡尔坐标系;对于每个机器人,都以坐标(x,y)表示其在这个空间内的位置,并使用复数(x+yj)用于表征机器人在平面内的位置,j指的是复数中的单位虚数 即 使用符号表示所有复数的集合;不失一般性,可设平面内参与编队的机器人个数一共为n个,用数字

1,2…,n‑1,n对这些机器人分别进行编号;把第i个机器人在平面中的位置用符号xi表示,T T

所有机器人的位置可用一列n维的复数向量 表示,x=(x1,x2,…,xn) ,其中(·) 为矩阵的转置;在编队控制中,如果不考虑碰撞,一般视机器人为无碰撞体积的质点,系统中的每个机器人都服从单积分器运动模型:是第i个机器人的速度输入信号;

步骤2,建立多机器人系统的拓扑图;

将多机器人系统及其相互之间的局部交互表示为有向拓扑图G=(V,E),其中V={v1,v2,…vn}表示图中的n个节点的集合,vi表示图中第i个节点,即第i个机器人, 表示节点与节点之间的边的集合,eik∈E表示机器人i能测量机器人k的相对位置 其中ρ表示两个机器人之间的距离,表示机器人k相对于机器人i的角度;从任一机器人出发建立一棵有向生成树,使其余机器人均在生成树的节点上;简言之,每一个机器人能测量至少一个其他机器人的相对位置;

步骤3,根据拓扑图实现实拉普拉斯矩阵;

对应图无向图G=(V,E)的生成邻接矩阵W;如果第i个机器人能够测量第k个机器人的相对位置,即存在eik∈E,那么wik=1;反之,如果第i个机器人不能够测量第k个机器人的相对位置,即 那么wik=0;这里的wik表示矩阵W第i行第k列个元素;

定义复拉普拉斯矩阵L,

式(2)中∑(·)为求和符;

步骤4,设计复数拉普拉斯矩阵;

定义符号e为自然常数,将队形定义为 通过复数理论可jθ

知,e 表示的是复平面上单位圆的一点;由于角度θ可任意规定,因此队形可根据使用需要改变θ的值;令D=diag(ξ)为一个对角矩阵,对角线元素分别为ξ的每一个元素,即复拉普拉斯矩阵可设计为

‑1

P=DLD       (4)步骤5,将连续系统转换为离散系统;

机器人的控制信号由机器人与其邻居机器人位置的复数加权组合决定:其中ui表示第i个机器人的速度控制输入, 和 分别表示第i和第k个机器人的位置,pik表示矩阵P的第i行第k个元素;Ni表示机器人i所能测量到的其余机器人的集合,即Ni={vk:eik∈E};在控制信号输入下,全局动态响应为:由于在实际应用中控制信号以离散时间信号给出,其对应的离散时间动态响应为:x(k+1)=(I‑εP)x(k)=Ax(k)      (7)其中ε为采样时间,取值范围 dmax是网络拓扑的入度,即机器人能够测量其余机器人的数量的最大值。