1.一种考虑频变特性的约束阻尼结构的声‑振响应计算方法,其特征在于,包括以下步骤:
S1:获取未敷设约束阻尼层的结构初始自振频率和自振振型;
S2:建立约束阻尼结构的有限元模型,将结构初始自振频率对应的材料参数作为迭代初始条件,进行迭代模态分析,迭代模态分析完成后,进入步骤S3;
S3:将进行迭代模态分析后得到的分析频段内约束阻尼结构的自振振型作为空间基底,基于模态叠加法计算约束阻尼结构的振动响应;
S4:将约束阻尼结构的振动响应作为声学边界条件,计算约束阻尼结构的声学响应;
所述步骤S2中,建立约束阻尼结构的有限元模型,并将未敷设约束阻尼层的结构初始自振频率ωm,0对应的阻尼层剪切模量Gd(ωm,0)和材料损耗因子ηv(ωm,0)作为迭代初始条件,进行迭代模态分析,直至相邻两次模态分析得到的粘弹性阻尼材料剪切模量的相对误差|Gd(ωm,n+1)‑Gd(ωm,n)|/Gd(ωm,n)或损耗因子的相对误差|ηv(ωm,n+1)‑ηv(ωm,n)|/ηv(ωm,n)小于设定值,进入下一阶迭代模态分析,直至得到分析频段内约束阻尼结构的所有阶自振振型,进入步骤S3;
所述步骤S2中,进行迭代模态分析得到的特征值方程为:
其中,i为虚数单位,[Ke]为弹性层的刚度矩阵,[KvR(ωm,n)]为阻尼层刚度矩阵的实部,[KvI(ωm,n)]为阻尼层刚度矩阵的虚部, 为约束阻尼结构的自振振型,m为振型的阶数,n为迭代次数,ωm,n为第n次迭代后约束阻尼结构第m阶自振频率计算值;
第m阶迭代模态分析的控制条件为:
其中,εG为粘弹性阻尼材料剪切模量的相对误差, 为粘弹性阻尼材料损耗因子的相对误差, 为粘弹性阻尼材料剪切模量对应的迭代控制条件, 为粘弹性阻尼材料损耗因子对应的迭代控制条件,Gd(ωm,n)为第n次迭代后粘弹性阻尼材料剪切模量的计算值,Gd(ωm,n+1)为第n+1次迭代后粘弹性阻尼材料剪切模量的计算值,ηv(ωm,n)为第n次迭代后粘弹性阻尼材料损耗因子的计算值,ηv(ωm,n+1)为第n+1次迭代后粘弹性阻尼材料损耗因子的计算值。
2.根据权利要求1所述的考虑频变特性的约束阻尼结构的声‑振响应计算方法,其特征在于,所述步骤S1中,获取未敷设约束阻尼层的结构初始自振频率和自振振型的具体方法为:建立未敷设约束阻尼层的结构有限元模型,并对结构有限元模型进行模态分析,得到初始自振频率ωm,0和自振振型{φm,0},其中,m为振型的阶数。
3.根据权利要求1所述的考虑频变特性的约束阻尼结构的声‑振响应计算方法,其特征在于,所述步骤S3中,计算约束阻尼结构的振动响应的具体方法为:建立约束阻尼结构的振动微分方程,根据约束阻尼结构的振动微分方程求解所有阶自振振型对应的广义坐标,并根据所有阶自振振型对应的广义坐标计算约束阻尼结构的振动响应。
4.根据权利要求3所述的考虑频变特性的约束阻尼结构的声‑振响应计算方法,其特征在于,所述约束阻尼结构的振动微分方程的表达式为:其中,i为虚数单位,{F}为外荷载向量,[Μ]为约束阻尼结构的质量矩阵,N为分析频段内截取的振型数量, 约束阻尼结构的第m阶振型,xm为广义坐标,[Ke]为弹性层的刚度矩阵,[KvR(ωm,n)]为阻尼层刚度矩阵的实部,[KvI(ωm,n)]为阻尼层刚度矩阵的虚部,ωm,n为第n次迭代后约束阻尼结构第m阶自振频率计算值;
所述约束阻尼结构的振动响应{u}的计算公式为:
5.根据权利要求1所述的考虑频变特性的约束阻尼结构的声‑振响应计算方法,其特征在于,所述步骤S4中,计算约束阻尼结构的声学响应的具体方法为:利用声学计算软件提取约束阻尼结构的边界网格,并导入约束阻尼结构的振动响应{u}作为声学边界条件,利用声学计算软件计算约束阻尼结构的声学响应。