欢迎来到知嘟嘟! 联系电话:13095918853 卖家免费入驻,海量在线求购! 卖家免费入驻,海量在线求购!
知嘟嘟
我要发布
联系电话:13095918853
知嘟嘟经纪人
收藏
专利号: 2024100039611
申请人: 长春市鸣玺科技有限公司
专利类型:发明专利
专利状态:已下证
专利领域: 计算;推算;计数
更新日期:2024-11-22
缴费截止日期: 暂无
价格&联系人
年费信息
委托购买

摘要:

权利要求书:

1.建筑能耗实时监测控制系统,其特征在于:所述系统包括数据采集模块、时间序列分析模块、异常检测模块、故障预警模块、协同优化模块、能效基准模块、边缘计算优化模块;

所述数据采集模块基于物联网技术,采用多传感器收集温度、湿度、能耗数据,并进行数据整合,生成实时能耗数据;

所述时间序列分析模块基于实时能耗数据,采用自回归积分滑动平均模型或长短期记忆神经网络,进行历史能耗数据分析,并进行趋势预测,生成能耗趋势预测;

所述异常检测模块基于能耗趋势预测,采用基于统计学的异常检测技术和机器学习算法,进行数据监测和异常模式识别,生成异常检测报告;

所述故障预警模块基于异常检测报告,采用规则引擎和敏感度分析进行风险评估,通过故障预警生成,利用通知分发技术进行信息传播,并通过故障诊断技术生成故障预警通知;

所述协同优化模块基于故障预警通知,采用深度学习和强化学习,进行能耗预测和能源协同优化,生成能耗优化策略;

所述能效基准模块基于能耗优化策略,采用聚类分析,建立能效标准,生成能效基准标准;

所述边缘计算优化模块基于能效基准标准,结合边缘计算和机器学习,进行本地数据分析和调整,生成实时优化调整策略;

所述数据采集模块包括温度传感子模块、湿度传感子模块、能耗监测子模块、数据传输子模块;

所述温度传感子模块基于物联网环境,采用热电偶技术和信号处理算法,生成环境温度数据;

所述湿度传感子模块基于物联网环境,采用电容式传感技术和自适应校准算法,生成环境湿度数据;

所述能耗监测子模块基于环境温度和湿度数据,采用智能电力测量技术和用电模式分析,生成能耗使用数据;

所述数据传输子模块基于能耗使用数据,采用 ZigBee 通信协议和数据加密技术,生成实时能耗数据;

所述信号处理算法包括峰值检测和噪声消除,所述自适应校准算法包括温度补偿和湿度矫正,所述用电模式分析包括负载识别和能效评估,所述数据加密技术包括 AES加密和数据完整性校验;

所述时间序列分析模块包括历史数据分析子模块、模型训练子模块、趋势预测子模块;

所述历史数据分析子模块基于实时能耗数据,采用线性和非线性时间序列分析,生成历史能耗分析结果;

所述模型训练子模块基于历史能耗分析结果,采用 ARIMA 模型和循环神经网络,生成能耗预测模型;

所述趋势预测子模块基于能耗预测模型,采用统计预测方法和蒙特卡洛模拟,生成能耗趋势预测;

所述时间序列分析包括自回归模型和趋势分解,所述循环神经网络包括LSTM和GRU算法,所述统计预测方法包括多元回归和概率分布分析;

所述异常检测模块包括统计分析子模块、机器学习处理子模块、异常模式识别子模块;

所述统计分析子模块基于能耗趋势预测,采用离群值检测和偏差分析技术,进行异常数据识别,生成初步异常检测结果;

所述机器学习处理子模块基于初步异常检测结果,采用异常模式识别算法,进行异常模式分类和特征重要性评估,生成深度异常分析结果;

所述异常模式识别子模块基于深度异常分析结果,采用聚类分析和神经网络,识别目标异常模式,生成异常检测报告;

所述离群值检测包括 Z 得分方法和四分位数范围检测,所述异常模式识别算法包括支持向量机和随机森林,所述聚类分析包括K均值聚类和层次聚类;

所述故障预警模块包括预警生成子模块、通知分发子模块、故障诊断子模块;

所述预警生成子模块基于异常检测报告,采用规则引擎和敏感度分析,进行故障风险评估,生成初步故障预警结果;

所述通知分发子模块基于初步故障预警结果,采用消息队列和推送技术,传播预警信息,生成预警通知分发记录;

所述故障诊断子模块基于预警通知分发记录,采用因果分析和故障树技术,进行深入的故障诊断,生成故障预警通知;

所述规则引擎包括条件触发规则和逻辑推理,所述推送技术包括即时消息推送和邮件通知,所述因果分析包括故障影响图和根本原因分析;

所述协同优化模块包括深度学习分析子模块、强化学习优化子模块、协同策略制定子模块;

所述深度学习分析子模块基于故障预警通知,采用卷积神经网络和递归神经网络,生成能耗特征分析结果;

所述强化学习优化子模块基于能耗特征分析结果,采用策略梯度法和深度Q网络,生成初步能源优化策略;

所述协同策略制定子模块基于初步能源优化策略,采用多变量分析和决策树模型,生成能耗优化策略;

所述卷积神经网络用于提取时间序列特征,所述递归神经网络用于处理序列依赖性,所述策略梯度法用于决策过程优化,所述深度Q网络用于强化长期决策学习;

所述能效基准模块包括聚类分析子模块、标准设定子模块、数据对比子模块;

所述聚类分析子模块基于能耗优化策略,采用K均值聚类和谱聚类方法,生成能耗数据聚类结果;

所述标准设定子模块基于能耗数据聚类结果,采用性能指标评定和阈值设定方法,生成初步能效标准;

所述数据对比子模块基于初步能效标准,采用趋势分析和方差分析方法,生成能效基准标准;

所述边缘计算优化模块包括边缘计算架构子模块、实时机器学习分析子模块、快速调整策略子模块;

所述边缘计算架构子模块基于能效基准标准,采用分布式数据处理和边缘节点优化算法,进行本地数据处理,生成边缘计算数据处理结果;

所述实时机器学习分析子模块基于边缘计算数据处理结果,采用在线学习和轻量级神经网络模型,进行数据特征分析,生成实时数据分析结果;

所述快速调整策略子模块基于实时数据分析结果,采用自适应控制和即时决策策略,进行系统响应优化,生成实时优化调整策略;

所述分布式数据处理和边缘节点优化算法包括数据分片和负载均衡技术,所述在线学习和轻量级神经网络模型包括增量学习算法和简化网络架构,所述自适应控制和即时决策策略包括反馈控制循环和动态策略调整机制。

2.建筑能耗实时监测控制方法,其特征在于,应用在权利要求1所述的建筑能耗实时监测控制系统,包括以下步骤:基于物联网技术,采用温湿度传感器和智能电表,收集环境和能耗数据,生成实时能耗数据;

基于所述实时能耗数据,采用自回归积分滑动平均模型和长短期记忆网络,进行趋势分析和预测,生成能耗趋势预测;

基于所述能耗趋势预测,采用统计学方法和机器学习进行异常检测,生成异常检测报告;

基于所述异常检测报告,采用规则引擎和敏感度分析进行故障风险评估,生成故障预警通知;

基于所述故障预警通知,采用深度学习和强化学习进行能耗优化策略制定,生成能耗优化策略;

基于所述能耗优化策略,采用边缘计算技术和实时机器学习进行本地数据分析和调整,生成实时优化调整策略。

3.根据权利要求 2 所述的建筑能耗实时监测控制方法,其特征在于:所述实时能耗数据包括温度、湿度和能耗量,所述能耗趋势预测包括未来能耗曲线和量化预测值,所述异常检测报告包括异常模式列表和潜在原因分析,所述故障预警通知包括预警级别、潜在故障点和建议响应措施,所述能耗优化策略包括能源分配方案和优化后能耗预测,所述实时优化调整策略包括即时能源调节方案和系统响应速度优化。